首页> 外文期刊>International Journal of Engineering Science >Rotating convection: recent developments
【24h】

Rotating convection: recent developments

机译:旋转对流:最新动态

获取原文
获取原文并翻译 | 示例
       

摘要

Convection in a rotating layer was a subject close to Professor Chandrasekhar's interest, and graces the cover of the Dover edition of his famous book on Hydrodynamic and Hydromagnetic Stability. In this article I will briefly review the results described in this book, which concern primarily linear stability theory for an unbounded layer. I will then discuss in detail the differences between the theory for the unbounded layer and that for a finite cylindrical container heated from below and rotating about its axis. These differences can be traced to the differences in the symmetries of the two systems, and lead one to expect time-dependent convection at onset, regardless of the value of the Prandtl number. In addition the boundaries are responsible for the presence of a new nonaxisymmetric mode of instability, called a wall mode. The theory predicts that these wall modes will precess at onset and set in before the body modes characteristic of the unbounded layer. These predictions have been confirmed in elegant experiments by R. Ecke and colleagues. In the nonlinear regime perhaps the most interesting phenomenon is the Kuppers--Lortz instability. In this instability a pattern of parallel rolls becomes unstable to another set of rolls oriented at an angle with respect to the first, once the rotation rate exceeds a critical value. This new set is itself unstable in the same fashion etc., resulting in complex dynamics right at onset. I will describe the theory behind this instability and identify similar instabilities for oscillatory convection whether in the form of standing or traveling rolls. Such instabilities are triggered by the formation of heteroclinic orbits connecting two sets of standing or traveling rolls with different orientation. Structurally stable heteroclinic cycles involving four traveling roll states are possible, and result in quite unusual dynamical behavior.
机译:旋转层中的对流是钱德拉塞卡教授的兴趣所在,也是他著名的《水动力和水磁稳定》一书的多佛版封面。在本文中,我将简要回顾本书中描述的结果,这些结果主要涉及无边界层的线性稳定性理论。然后,我将详细讨论无边界层的理论与从下方加热并围绕其轴旋转的有限圆柱容器的理论之间的区别。这些差异可以追溯到两个系统对称性的差异,并且不管普朗特数的值如何,一开始就期望对流依赖于时间。另外,边界负责存在新的非轴对称不稳定模式,称为壁模式。该理论预测,这些壁模将在无界层特征的体模之前开始进动并进入。 R. Ecke及其同事在优雅的实验中证实了这些预测。在非线性状态下,最有趣的现象可能是库珀-洛兹不稳定性。在这种不稳定性中,一旦转速超过临界值,平行辊的图案对于相对于第一辊成一定角度定向的另一组辊将变得不稳定。这种新装置本身以相同的方式等是不稳定的,从而在发作时就导致复杂的动力学。我将描述这种不稳定性背后的理论,并确定振动对流的类似不稳定性,无论是立辊还是行进辊。这种不稳定性是由连接两套不同方向的站立或行进辊的异斜轨道的形成触发的。涉及四个行进滚动状态的结构稳定的异质循环是可能的,并且会导致异常的动力学行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号