...
首页> 外文期刊>International journal of energy research >Ultracapacitor technologies and application in hybrid and electric vehicles
【24h】

Ultracapacitor technologies and application in hybrid and electric vehicles

机译:超级电容器技术及其在混合动力和电动汽车中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

This paper focuses on ultracapacitors (electrochemical capacitors) as energy storage in vehicle applications and thus evaluates the present state-of-the-art of ultracapacitor technologies and their suitability for use in electric and hybrid drivelines of various types of vehicles. A key consideration in determining the applicability of ultracapacitors for a particular vehicle application is the proper assessment of the energy storage and power requirements. For hybrid-electric vehicles, the key issues are the useable energy requirement and the maximum pulse power at high efficiency. For a Prius size vehicle, if the useable energy storage is about 125 Wh and needed efficiency is 90-95%, analysis shown in this paper indicate that vehicles can be designed using carbon ultracapacitors (both carbon/carbon and hybrid carbon) that yield high fuel economy improvements for all driving cycles and the cost of the ultracapacitors can be competitive with lithium-ion batteries for high volume production and carbon prices of less than $20 kg. The use of carbon/carbon devices in micro-hybrids is particularly attractive for a control strategy (sawtooth) that permits engine operation near its maximum efficiency using only a 6 kW electric motor. Vehicle projects in transit buses and passenger cars have shown that ultracapacitors have functioned as expected and significant fuel economy improvements have been achieved that are higher than would have been possible using batteries because of the higher round-trip efficiencies of the ultracapacitors. Ultracapacitors have particular advantages for use in fuel cell powered vehicles in which it is likely they can be used without interface electronics. Development of hybrid carbon devices is continuing showing energy densities of 12 Wh kg~(-1) and a high efficiency power density of about 1000 W kg~(-1). Vehicle simulations using those devices have shown that increased power capability in such devices is needed before full advantage can be taken of their increased energy density compared with carbon/carbon devices in some vehicle applications. Energy storage system considerations indicate that combinations of ultracapacitors and advanced batteries (Wh kg~(-1) > 200) are likely to prove advantageous in the future as such batteries are developed. This is likely to be the case in plug-in hybrids with high-power electric motors for which it may be difficult to limit the size and weight of the energy storage unit even using advanced batteries.
机译:本文将重点放在超级电容器(电化学电容器)作为车辆应用中的能量存储,从而评估了当前超级电容器技术的最新水平及其在各种类型的车辆的电动和混合动力传动系统中的适用性。确定超级电容器在特定车辆应用中的适用性的关键考虑因素是对储能和功率需求的正确评估。对于混合动力汽车,关键问题是可用能量需求和高效率下的最大脉冲功率。对于Prius尺寸的车辆,如果可用的能量存储量约为125 Wh,所需的效率为90-95%,则本文显示的分析表明,可以使用碳超级电容器(碳/碳和混合碳)来设计车辆在所有驾驶循环中,燃油经济性的提高以及超级电容器的成本,与锂离子电池相比,具有竞争力,可实现大批量生产且碳价低于20公斤。在微混合动力系统中使用碳/碳装置对于控制策略(锯齿)特别有吸引力,该策略仅使用6 kW电动机即可使发动机运行在其最大效率附近。公交车和乘用车的车辆项目表明,超级电容器已达到预期的功能,并且由于超级电容器具有更高的往返效率,因此实现了显着的燃油经济性改善,该改善比使用电池时要高。超级电容器在燃料电池驱动的车辆中具有特殊的优势,因为超级电容器很可能无需接口电子设备即可使用。混合碳器件的开发继续显示出12 Wh kg〜(-1)的能量密度和大约1000 W kg〜(-1)的高效功率密度。使用这些设备进行的车辆仿真显示,与某些车辆应用中的碳/碳设备相比,要充分利用它们的增加的能量密度,就需要提高此类设备的功率能力。能量存储系统的考虑表明,超级电容器和高级电池(Wh kg〜(-1)> 200)的组合在将来随着这种电池的开发可能会证明是有利的。在具有大功率电动机的插电式混合动力车中可能就是这种情况,即使使用高级电池,也可能难以限制储能单元的尺寸和重量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号