首页> 外文期刊>International Journal of Computers & Applications >An efficient approach for land record classification and information retrieval in data warehouse
【24h】

An efficient approach for land record classification and information retrieval in data warehouse

机译:数据仓库中的土地记录分类和信息检索的有效方法

获取原文
获取原文并翻译 | 示例

摘要

Data warehouse collects recent and old land record data used to generate analytical reports. Depending on factors such as historical evolution and local traditions, the system of land records differs from states. The survey maps, textual data, and registration records are matched with each other and updated for the registration and maintenance of such land records. In addition, citizens must get access to multiple agencies to get full information on land records. In order to eliminate such limitation, we propose a novel Artificial Neural Network (ANN)-FUZZY-cat swarm optimization (CSO) approach to accurately predict and retrieve the information. First, the ANN classifies the input data for ordering the information to construct a database of different classes. Then, the mongo database store a large amount of land record data for facilitating easy maintenance, prompt updating of land records and security. The accurate results for the user query are retrieved using CSO algorithm. Optimal rules allow users to access their posts easily. Finally, better performance results are for the information retrieval in terms of accuracy, precision, and recall.
机译:数据仓库收集最近和旧的土地记录数据,用于生成分析报告。根据历史进化和当地传统等因素,土地记录系统与各国不同。调查地图,文本数据和注册记录相互匹配,并更新了此类土地记录的注册和维护。此外,公民必须访问多个机构,以获得有关土地记录的全部信息。为了消除此类限制,我们提出了一种新颖的人工神经网络(ANN)-Fuzzy-CAT群优化(CSO)方法来准确地预测和检索信息。首先,ANN对输入数据进行排序以构建不同类的数据库。然后,Mongo数据库存储大量的土地记录数据,以便易于维护,迅速更新土地记录和安全性。使用CSO算法检索用户查询的准确结果。最佳规则允许用户轻松访问其帖子。最后,更好的性能结果是在准确性,精度和召回方面的信息检索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号