首页> 外文期刊>International journal of artificial intelligence and soft computing >Predicting financial time series data using artificial immune system-inspired neural networks
【24h】

Predicting financial time series data using artificial immune system-inspired neural networks

机译:使用人工免疫系统启发的神经网络预测财务时间序列数据

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates a set of approaches for the prediction of noisy time series data; specifically, the prediction of financial signals. A novel dynamic self-organised multilayer neural network based on the immune algorithm for financial time series prediction is presented, combining the properties of both recurrent and self-organised neural networks. In an attempt to overcome inherent stability and convergence problems, the network is derived to ensure that it reaches a unique equilibrium state. The accuracy of the comparative evaluation is enhanced in terms of profit earning; empirical testing used in this work includes normalised mean square error (NMSE) to evaluate forecast fitness and also evaluates predictions against financial metrics to assess profit generation. Extensive simulations for multi-step prediction in stationary and non-stationary time series were performed. The resulting forecast made by the proposed network shows substantial profits on financial historical signals when compared to various solely neural network approaches. These simulations suggest that dynamic immunology-based self-organised neural networks have a better ability to capture the chaotic movement in financial signals.
机译:本文研究了一套用于预测噪声时间序列数据的方法。特别是财务信号的预测。结合循环神经网络和自组织神经网络的特点,提出了一种基于免疫算法的金融时间序列预测的动态自组织多层神经网络。为了克服固有的稳定性和收敛性问题,派生网络以确保其达到唯一的平衡状态。比较评估的准确性在获利方面得到提高;在这项工作中使用的经验测试包括标准化均方误差(NMSE),以评估预测适用性,还根据财务指标评估预测,以评估利润产生。对固定和非固定时间序列中的多步预测进行了广泛的模拟。与各种单独的神经网络方法相比,拟议网络做出的预测结果显示,金融历史信号可观的利润可观。这些模拟表明基于动态免疫学的自组织神经网络具有更好的能力来捕获金融信号中的混沌运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号