首页> 外文期刊>Letters in heat and mass transfer >Novel inductive hot embossing for increasing micromolding efficiency
【24h】

Novel inductive hot embossing for increasing micromolding efficiency

机译:新型感应热压纹技术,可提高微成型效率

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Hot embossing is one of the most common methods used for replicating microstructures on a polymeric substrate and has been widely used to fabricate precise optical products. Hot embossing is simple and provides a uniform forming pressure and high replication rate. However, periodic heating and cooling of the mold is required. Consequently, hot embossing requires a long molding cycle time and high production cost, thus reducing its applicability for mass production. To increase the molding efficiency of hot embossing, this study developed a novel hot embossing technique of rapidly heating the stamper surface by using induction coils, instead of volumetrical-ly heating the entire mold by using conventional approaches. Consequently, heating and cooling times are reduced. Furthermore, a new magnetic shielding method associated with ferrite materials was used for designing induction coils to solve the problem of uneven heating caused by the proximity effect. In this study, a novel inductive hot embossing method was used with pressurized gas for replicating microstructures on a polymeric substrate. Moreover, the crucial process parameters influencing heating uniformity, molding cycle time, and replication rate were systematically investigated. The experimental results revealed that applying ferrite magnetic shielding on a single-layer spiral coil reduced the deviation of surface temperature only from 20.3 to 11.5 ℃. In particular, when replication quality was constant, the molding cycle time was markedly reduced by over 50% (the cycle time was approximately 45 s) compared with conventional hot embossing.
机译:热压印是用于在聚合物基材上复制微结构的最常用方法之一,并且已被广泛用于制造精密光学产品。热压纹简单,并提供均匀的成型压力和高复制率。但是,需要定期加热和冷却模具。因此,热压花需要较长的成型周期时间和较高的生产成本,从而降低了其大量生产的适用性。为了提高热压纹的成型效率,本研究开发了一种新颖的热压纹技术,该技术通过使用感应线圈快速加热压模表面,而不是通过使用常规方法对整个模具进行体积加热。因此,减少了加热和冷却时间。此外,一种新型的与铁氧体材料相关的磁屏蔽方法被用于设计感应线圈,以解决由邻近效应引起的加热不均匀的问题。在这项研究中,一种新颖的感应式热压花方法与压缩气体一起用于复制聚合物基材上的微结构。此外,系统地研究了影响加热均匀性,成型周期和复制速度的关键工艺参数。实验结果表明,在单层螺旋线圈上应用铁氧体磁屏蔽将表面温度的偏差仅从20.3降低到11.5℃。特别是,在复制质量恒定的情况下,与传统的热压花相比,成型周期明显缩短了50%以上(周期大约为45 s)。

著录项

  • 来源
    《Letters in heat and mass transfer》 |2016年第1期|38-46|共9页
  • 作者单位

    Department of Power Mechanical Engineering, National Taitung Junior College, 889 Jhengci N. Rd., Taitung City 95045, Taiwan, ROC;

    Department of Mechanical and Automation Engineering, National Kaohsiung First University of Science and Technology, 2 Jhuoyue Road, Nanzih, Kaohsiung City 811, Taiwan, ROC;

    Department of Mechanical and Automation Engineering, National Kaohsiung First University of Science and Technology, 2 Jhuoyue Road, Nanzih, Kaohsiung City 811, Taiwan, ROC;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ferrite; Hot embossing; Induction heating; Magnetic shielding; Micromolding;

    机译:铁氧体热压纹;感应加热;磁屏蔽;微成型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号