首页> 外文期刊>International communications in heat and mass transfer >Pore scale simulation of evaporation in a porous wick of a loop heat pipe flat evaporator using Lattice Boltzmann method
【24h】

Pore scale simulation of evaporation in a porous wick of a loop heat pipe flat evaporator using Lattice Boltzmann method

机译:用莱迪思·玻尔兹曼方法模拟回路热管平面蒸发器多孔芯中蒸发的孔径

获取原文
获取原文并翻译 | 示例
           

摘要

The evaporation heat transfer of a loop heat pipe (LHP) flat evaporator with porous wick is numerically simulated at pore scale using an advanced phase-change Lattice Boltzmann Method (LBM). The effects of heat flux and surface wettability (contact angle) on the patterns and dynamics of liquid-vapor interface, liquid volume fraction, temperature distribution at wick-fin and wick-groove interfaces, as well as effective heat transfer coefficient of the evaporator are investigated. It is found that liquid-vapor interface will appear five kinds of patterns or dynamics sequentially with the increase of heat flux, i.e., (a) entirely saturated wick, (b) partially saturated wick with periodical nucleation and vanishing of bubbles, (c) partially saturated wick with periodical growth and shrink of bubbles, (d) partially saturated wick with stable liquid-vapor interface, and (e) fully dry out at wick-fin interface. Generally, the higher the heat flux and the larger the contact angle, the smaller the steady-state liquid volume fraction in the wick. However, at a certain range of heat flux, the liquid volume fraction oscillates periodically corresponding to periodical oscillations of liquid-vapor interface, and its amplitude and period increases with increasing heat flux and contact angle. Due to the random pore size distribution of porous wick, the temperature distributions are not symmetric between the left and the right outlets. This discrepancy is especially significant for partially saturated wicks, revealing the remarkable impacts of local pore structure on evaporation characteristics. With the increase of heat flux, the effective heat transfer coefficient at first increases owing to the inception and development of bubble nucleation within the wick, and then decreases due to the occurrence and enlargement of dry out. The larger the contact angle, the smaller the heat flux to trigger the bubble nucleation, and therefore the earlier to achieve the maximum effective heat transfer coefficient. Nevertheless, contact angles studied in this paper have no obvious effect on the maximum value of effective heat transfer coefficient.
机译:使用先进的相变格子Boltzmann方法(LBM)在孔隙尺度上对带有多孔芯的环形热管(LHP)平面蒸发器的蒸发传热进行了数值模拟。热通量和表面润湿性(接触角)对液-气界面,液体体积分数,芯-翅片和芯-凹槽界面处的温度分布以及蒸发器的有效传热系数的模式和动力学的影响如下:调查。发现随着热通量的增加,液-汽界面将依次出现五种模式或动力学,即(a)完全饱和的芯,(b)具有周期性成核和气泡消失的部分饱和的芯,(c)具有周期性气泡增长和收缩的部分饱和的灯芯,(d)具有稳定的液-气界面的部分饱和的灯芯,以及(e)芯-翅片界面完全变干。通常,热通量越高且接触角越大,灯芯中的稳态液体体积分数越小。然而,在一定的热通量范围内,液体体积分数对应于液-气界面的周期性振荡而周期性地振荡,并且其幅度和周期随着热通量和接触角的增加而增加。由于多孔芯的随机孔径分布,左右出口之间的温度分布不对称。这种差异对于部分饱和的灯芯尤其重要,它揭示了局部孔结构对蒸发特性的显着影响。随着热通量的增加,有效传热系数首先由于芯内气泡成核的发生和发展而增加,然后由于变干的发生和扩大而降低。接触角越大,触发气泡成核的热通量越小,因此越早实现最大有效传热系数。尽管如此,本文研究的接触角对有效传热系数的最大值没有明显的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号