首页> 外文期刊>Interactive Learning Environments >Prediction of learner's appropriate online community of practice in question and answering website: similarity in interaction, interest, prior knowledge
【24h】

Prediction of learner's appropriate online community of practice in question and answering website: similarity in interaction, interest, prior knowledge

机译:预测学习者的适当在线在线展览会和回答网站:相似性,兴趣,事先知识

获取原文
获取原文并翻译 | 示例

摘要

The development of information technology and social networks has created new opportunities to access lifelong learning in the form of informal learning. In an informal learning environment, learning takes place via Communities of Practice (CoP). The learning success factors in online CoPs are learners' similarity in learning interests and learners' ability to interact with each other in the community. In this paper, a method based on Bayes probability and modified collaborative filtering is proposed to predict next learner topics and suggests appropriate learning questions. In the recommended approach, the learner's CoP predictions are made based on learners' behavior in the learning environment and their prior knowledge. The proposed method is evaluated using the dataset of Stack Overflow as a professional Question Answering website. Results show: 1) The proposed method with cosine similarity function, has better performance than traditional Collaborative Filtering, in the prediction of question related to CoP based on co-learner and mentor roles. 2) Using the proposed method can increase the effective appropriate interaction ratio in the learning environment.
机译:信息技术和社交网络的发展创造了以非正式学习形式访问终身学习的新机会。在一个非正式的学习环境中,通过练习社区(COP)进行学习。在线警察中的学习成功因素是学习者在学习兴趣和学习者在社区中互相互动的相似性。在本文中,提出了一种基于贝叶斯概率和修改的协作滤波的方法来预测下一个学习者主题并表明适当的学习问题。在推荐的方法中,学习者的COP预测是基于学习者在学习环境中的行为及其先验知识进行的。使用堆栈溢出的数据集作为专业问题应答网站评估所提出的方法。结果表明:1)具有余弦相似性功能的提出方法,比传统的协作过滤具有更好的性能,以便在基于共同学习者和MENTOR角色的COP相关的问题预测中。 2)使用所提出的方法可以提高学习环境中有效的适当相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号