首页> 外文期刊>Interactive Learning Environments >Setting the pace: examining cognitive processing in MOOC discussion forums with automatic text analysis
【24h】

Setting the pace: examining cognitive processing in MOOC discussion forums with automatic text analysis

机译:设定步伐:通过自动文本分析在MOOC论坛中检查认知处理

获取原文
获取原文并翻译 | 示例

摘要

Learning analytics focuses on extracting meaning from large amounts of data. One of the largest datasets in education comes from Massive Open Online Courses (MOOCs) that typically feature enrollments in the tens of thousands. Analyzing MOOC discussion forums presents logistical issues, resulting chiefly from the size of the dataset, which can create challenges for understanding and adequately describing student behaviors. Utilizing automatic text analysis, this study built a hierarchical linear model that examines the influence of the pacing condition of a massive open online course (MOOC), whether it is self-paced or instructor-paced, on the demonstration of cognitive processing in a HarvardX MOOC. The analysis of 2,423 discussion posts generated by 671 students revealed the number of dictionary words used were positively associated with cognitive processing while analytical thinking and clout was negatively associated. We found that none of the student background information (gender, education), status of the course engagement (explored or completed), or the course pace (self-paced versus instructor paced) significantly influenced the cognitive processing of the postings.
机译:学习分析专注于从大量数据中提取含义。教育中最大的数据集之一来自大规模的在线公开课程(MOOC),通常具有成千上万的入学人数。分析MOOC讨论论坛会发现后勤问题,这主要是由于数据集的大小而造成的,这可能会给理解和充分描述学生行为带来挑战。利用自动文本分析,本研究建立了一个层次线性模型,该模型检查了大规模开放式在线课程(MOOC)的节奏设置条件(无论是自定进度还是讲授课程设置)对HarvardX中认知处理演示的影响MOOC。对由671名学生生成的2,423个讨论帖子的分析表明,所使用的词典单词的数量与认知处理呈正相关,而分析思维和影响力则与呈负相关。我们发现,学生的背景信息(性别,教育程度),课程参与的状态(已探究或已完成)或课程进度(自定进度与讲师的进度)均不会显着影响发布的认知处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号