首页> 外文期刊>Intelligent automation and soft computing >Enhancing the Classification Accuracy in Sentiment Analysis with Computational Intelligence Using Joint Sentiment Topic Detection with MEDLDA
【24h】

Enhancing the Classification Accuracy in Sentiment Analysis with Computational Intelligence Using Joint Sentiment Topic Detection with MEDLDA

机译:使用MEDLDA联合情感主题检测,通过计算智能提高情感分析中的分类准确性

获取原文
获取原文并翻译 | 示例

摘要

Web mining is the process of integrating the information from web by traditional data mining methodologies and techniques. Opinion mining is an application of natural language processing to extract subjective information from web. Online reviews require efficient classification algorithms for analysing the sentiments, which does not perform an in-depth analysis in current methods. Sentiment classification is done at document level in combination with topics and sentiments. It is based on weakly supervised Joint Sentiment-Topic mode which extends the topic model Maximum Entropy Discrimination Latent Dirichlet Allocation by constructing an additional sentiment layer. It is assumed that topics generated are dependent on sentiment distributions and the words generated are conditioned on the sentiment topic pairs. MEDLDA is used to increase the accuracy of topic modeling.
机译:Web挖掘是通过传统的数据挖掘方法和技术集成来自Web的信息的过程。意见挖掘是自然语言处理的一种应用程序,用于从Web提取主观信息。在线评论需要有效的分类算法来分析情绪,而当前的方法则无法进行深入的分析。情感分类是在文档级别结合主题和情感进行的。它基于弱监督的联合情感主题模式,该模式通过构建附加的情感层来扩展主题模型最大熵区分潜在狄利克雷分配。假定生成的主题取决于情感分布,并且生成的单词以情感主题对为条件。 MEDLDA用于提高主题建模的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号