首页> 外文期刊>INFORMS journal on computing >Robust Optimization of a Broad Class of Heterogeneous Vehicle Routing Problems Under Demand Uncertainty
【24h】

Robust Optimization of a Broad Class of Heterogeneous Vehicle Routing Problems Under Demand Uncertainty

机译:鲁棒优化需求不确定性的广泛异构车辆路线问题

获取原文
获取原文并翻译 | 示例

摘要

This paper studies robust variants of an extended model of the classical heterogeneous vehicle routing problem (HVRP), where a mixed fleet of vehicles with different capacities, availabilities, fixed costs, and routing costs is used to serve customers with uncertain demand. This model includes, as special cases, all variants of the HVRP studied in the literature with fixed and unlimited fleet sizes, accessibility restrictions at customer locations, and multiple depots. Contrary to its deterministic counterpart, the goal of the robust HVRP is to determine a minimum cost set of routes and fleet composition that remains feasible for all demand realizations from a prespecified uncertainty set. To solve this problem, we develop robust versions of classical node and edge exchange neighborhoods that are commonly used in local search and establish that efficient evaluation of the local moves can be achieved for five popular classes of uncertainty sets. The proposed local search is then incorporated in a modular fashion within two metaheuristic algorithms to determine robust HVRP solutions. The quality of the metaheuristic solutions is quantified using an integer programming model that provides lower bounds on the optimal solution. An extensive computational study on literature benchmarks shows that the proposed methods allow us to obtain high-quality robust solutions for different uncertainty sets and with minor additional effort compared with deterministic solutions.
机译:本文研究了经典异构车辆路由问题(HVRP)的扩展模型的强大变体,其中使用具有不同容量,可用性,固定成本和路由成本的车辆混合车队来为客户提供不确定的需求。该模型包括特殊情况,在文献中研究了HVRP的所有变体,具有固定和无限的舰队尺寸,客户位置的可访问性限制以及多个仓库。与其确定性的对应物相反,强大的HVRP的目标是确定最低成本集的路线和舰队组合物,仍然可以从预先确定的不确定性集中实现所有需求的实现。为了解决这个问题,我们开发了常用于本地搜索中常用的经典节点和边缘交换邻域的强大版本,并建立对本地移动的有效评估,可以实现五个流行的不确定性集。然后在两个成群质算法中以模块化方式结合所提出的本地搜索以确定鲁棒HVRP解决方案。使用整数编程模型量化了成群质型解决方案的质量,该模型在最佳解决方案上提供下限。关于文献基准的广泛计算研究表明,该方法允许我们为不同的不确定性集获得高质量的强大解决方案,以及与确定性解决方案相比的轻微额外努力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号