首页> 外文期刊>INFORMS journal on computing >Virtual Statistics in Simulation via k Nearest Neighbors
【24h】

Virtual Statistics in Simulation via k Nearest Neighbors

机译:通过K最近邻居模拟的虚拟统计

获取原文
获取原文并翻译 | 示例

摘要

"Virtual statistics," as we define them, are estimators of performance measures that are conditional on the occurrence of an event; virtual waiting time of a customer arriving to a queue at time To is one example of virtual performance. In this paper, we describe a k-nearest-neighbor method for estimating virtual performance post simulation from the retained sample paths, examining both its small-sample and asymptotic properties and providing two approaches for measuring the error of the k-nearest-neighbor estimator. We implement leave-one-replication-out cross-validation for tuning a single parameter k to use for any time (or times) of interest and evaluate the prediction performance of the k-nearest-neighbor estimator via controlled studies. As a by-product, this paper motivates a different way of thinking about how to process the output from dynamic, discrete-event simulation.
机译:“虚拟统计数据”,因为我们定义它们,是有条件的绩效措施的估计,这是一个事件的发生;当时到达队列的客户的虚拟等待时间是虚拟性能的一个示例。在本文中,我们描述了一种用于从保留的样本路径估计虚拟性能的K到最近邻的方法,检查其小样本和渐近性质,并提供两种用于测量k离邻居估计器的误差的方法。我们实施休假 - 重复的交叉验证,用于调谐单个参数k以用于感兴趣的任何时间(或时间),并通过受控研究评估K-CircleS-Chield估计器的预测性能。作为副产品,本文激励了不同的思考如何处理动态,离散事件仿真的输出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号