首页> 外文期刊>INFORMS journal on computing >Surrogate Optimization of Computationally Expensive Black-Box Problems with Hidden Constraints
【24h】

Surrogate Optimization of Computationally Expensive Black-Box Problems with Hidden Constraints

机译:具有隐藏约束的计算昂贵黑箱问题的代理优化

获取原文
获取原文并翻译 | 示例

摘要

We introduce the algorithm SHEBO (surrogate optimization of problems with hidden constraints and expensive black-box objectives), an efficient optimization algorithm that employs surrogate models to solve computationally expensive black-box simulation optimization problems that have hidden constraints. Hidden constraints are encountered when the objective function evaluation does not return a value for a parameter vector. These constraints are often encountered in optimization problems in which the objective function is computed by a black-box simulation code. SHEBO uses a combination of local and global search strategies together with an evaluability prediction function and a dynamically adjusted evaluability threshold to iteratively select new sample points. We compare the performance of our algorithm with that of the mesh-based algorithms mesh adaptive direct search (MADS, NOMAD [nonlinear optimization by mesh adaptive direct search] implementation) and implicit filtering and SNOBFIT (stable noisy optimization by branch and fit), which assigns artificial function values to points that violate the hidden constraints. Our numerical experiments for a large set of test problems with 2-30 dimensions and a 31-dimensional real-world application problem arising in combustion simulation show that SHEBO is an efficient solver that outperforms the other methods for many test problems.
机译:我们介绍了算法SHEBO(具有隐藏约束和昂贵黑匣子目标的问题的代理优化),这是一种有效的优化算法,它使用代理模型来解决具有隐藏约束的计算量大的黑匣子仿真优化问题。当目标函数评估未返回参数向量的值时,会遇到隐藏的约束。在优化问题中经常遇到这些约束,在优化问题中,目标函数由黑盒仿真代码计算。 SHEBO将本地和全局搜索策略与可评估性预测功能和动态调整的可评估性阈值结合使用,以迭代方式选择新的样本点。我们将算法的性能与基于网格的算法的网格自适应直接搜索(MADS,NOMAD [通过网格自适应直接搜索进行非线性优化]实现)以及隐式过滤和SNOBFIT(通过分支和拟合进行的稳定噪声优化)的性能进行比较,将人造函数值分配给违反隐藏约束的点。我们对燃烧模拟中出现的2-30个维的大量测试问题和31维实际应用问题进行的数值实验表明,SHEBO是一种有效的求解器,其性能优于其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号