首页> 外文期刊>INFORMS journal on computing >Heuristic Search for the Generalized Minimum Spanning Tree Problem
【24h】

Heuristic Search for the Generalized Minimum Spanning Tree Problem

机译:广义最小生成树问题的启发式搜索

获取原文
获取原文并翻译 | 示例

摘要

The generalized minimum spanning tree (GMST) problem occurs in telecommunications network planning, where a network of node clusters needs to be connected via a tree architecture using exactly one node per cluster. The problem is known to be NP-hard, and even finding a constant factor approximation algorithm is NP-hard. In this paper, we present two heuristic search approaches for the GMST problem: local search and a genetic algorithm. Our computational experiments show that these heuristics rapidly provide high-quality solutions for the GMST and outperform some previously suggested heuristics for the problem. In our computational tests on 211 test problems (including 169 problems from the TSPLIB set), our local-search heuristic found the optimal solution in 179 instances and our genetic-algorithm procedure found the optimal solution in 185 instances (out of the 211 instances, the optimal solution is known in 187 instances). Further, on each of the 19 unsolved instances from TSPLIB, both our local-search heuristic and genetic-algorithm procedure improved upon the best previously known solution.
机译:通用最小生成树(GMST)问题出现在电信网络规划中,其中节点群集网络需要通过树形结构连接,每个群集恰好使用一个节点。已知该问题是NP困难的,甚至找到一个常数因子近似算法也是NP困难的。在本文中,我们提出了两种针对GMST问题的启发式搜索方法:局部搜索和遗传算法。我们的计算实验表明,这些启发式方法可以快速为GMST提供高质量的解决方案,并且优于以前针对该问题提出的启发式方法。在我们针对211个测试问题(包括TSPLIB集合中的169个问题)的计算测试中,我们的本地搜索启发式方法在179个实例中找到了最优解,而我们的遗传算法程序在185个实例(在211个实例中,已知的最佳解决方案有187个)。此外,在TSPLIB的19个未解决实例中的每一个实例上,我们的本地搜索启发式算法和遗传算法程序都在以前最好的已知解决方案上得到了改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号