首页> 外文期刊>INFORMS journal on computing >An Experimental Study of LP-Based Approximation Algorithms for Scheduling Problems
【24h】

An Experimental Study of LP-Based Approximation Algorithms for Scheduling Problems

机译:基于LP的调度问题近似算法的实验研究。

获取原文
获取原文并翻译 | 示例

摘要

Recently there has been much progress on the design of approximation algorithms for a variety of scheduling problems in which the goal is to minimize the average weighted completion time of the jobs scheduled. Many of these approximation algorithms have been inspired by polyhedral formulations of the scheduling problems and their use in computing optimal solutions to small instances. In this paper we demonstrate that the progress in the design and analysis of approximation algorithms for these problems also yields techniques with improved computational efficacy. Specifically, we give a comprehensive experimental study of a number of these approximation algorithms for 1|r_j|∑w_jC_j, the problem of scheduling jobs with release dates on one machine so as to minimize the average weighted completion time of the jobs scheduled. We study both the quality of lower bounds given for this problem by different linear-programming relaxations and combinatorial relaxations, and the quality of upper bounds delivered by a number of approximation algorithms based on them. The best algorithms, on almost all instances, come within a few percent of the optimal average weighted completion time. Furthermore, we show that this can usually be achieved with O(nlog n) computation. In addition we observe that on most kinds of synthetic data used in experimental studies a simple greedy heuristic, used in successful combinatorial branch-and-bound algorithms for the problem, outperforms (on average) all of the LP-based heuristics. We identify, however, other classes of problems on which the LP-based heuristics are superior and report on experiments that give a qualitative sense of the range of dominance of each. We consider the impact of local improvement on the solutions as well. We also consider the performance of the algorithms for the average weighted flow-time criterion, which, although equivalent to average weighted completion time at optimality, is provably much harder to approximate. Nonetheless, we demonstrate that for most instances we consider that the algorithms give very good results for this criterion as well. Finally, we extend the techniques to a rather different and more complex problem that arises from an actual manufacturing application: resource-constrained project scheduling. In this setting as well, the techniques yield algorithms with improved performance; we give the best-known solutions for a set of instances provided by BASF AG, Germany.
机译:最近,针对各种调度问题的近似算法的设计已经取得了很大进展,其目标是最大程度地减少调度作业的平均加权完成时间。这些近似算法中的许多算法都受到调度问题的多面体公式及其在计算小型实例的最佳解决方案中的启发。在本文中,我们证明了针对这些问题的近似算法的设计和分析进展也产生了具有更高计算效率的技术。具体来说,我们对1 | r_j | ∑w_jC_j的许多近似算法进行了全面的实验研究,这是在一台机器上调度具有发布日期的作业的问题,以便最大程度地减少所调度作业的平均加权完成时间。我们研究了通过不同的线性编程弛豫和组合弛豫来解决此问题的下界的质量,以及通过基于它们的许多近似算法传递的上限的质量。在几乎所有情况下,最佳算法都在最佳平均加权完成时间的百分之几之内。此外,我们表明这通常可以通过O(nlog n)计算来实现。此外,我们观察到,在实验研究中使用的大多数合成数据中,用于问题的成功组合分支定界算法中使用的简单贪婪启发式算法均优于(平均)所有基于LP的启发式算法。但是,我们确定了基于LP的启发式方法在其他类别上的优越性,并报告了对每种方法的主导范围有定性意义的实验。我们还考虑了本地改进对解决方案的影响。我们还考虑了平均加权流动时间准则的算法性能,尽管该算法等效于最优状态下的平均加权完成时间,但事实证明很难近似。尽管如此,我们证明了在大多数情况下,我们认为算法对于该标准也给出了很好的结果。最后,我们将技术扩展到实际制造应用中出现的一个完全不同且更复杂的问题:资源受限的项目计划。同样在这种情况下,这些技术可以产生性能提高的算法。我们为德国BASF AG提供的一系列实例提供最著名的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号