首页> 外文期刊>INFORMS journal on computing >A New Evolutionary Algorithm for a Class of Nonlinear Bilevel Programming Problems and Its Global Convergence
【24h】

A New Evolutionary Algorithm for a Class of Nonlinear Bilevel Programming Problems and Its Global Convergence

机译:一类非线性双层规划问题的新进化算法及其全局收敛性

获取原文
获取原文并翻译 | 示例

摘要

When the leader's objective function of a nonlinear bilevel programming problem is nondifferentiable and the follower's problem of it is nonconvex, the existing algorithms cannot solve the problem. In this paper, a new effective evolutionary algorithm is proposed for this class of nonlinear bilevel programming problems. First, based on the leader's objective function, a new fitness function is proposed that can be easily used to evaluate the quality of different types of potential solutions. Then, based on Latin squares, an efficient crossover operator is constructed that has the ability of local search. Furthermore, a new mutation operator is designed by using some good search directions so that the offspring can approach a global optimal solution quickly. To solve the follower's problem efficiently, we apply some efficient deterministic optimization algorithms in the MATLAB Toolbox to search for its solutions. The asymptotically global convergence of the algorithm is proved. Numerical experiments on 25 test problems show that the proposed algorithm has a better performance than the compared algorithms on most of the test problems and is effective and efficient.
机译:当非线性双层规划问题的领导者目标函数是不可微的而跟随者的目标函数是非凸的时,现有算法无法解决该问题。针对此类非线性双层规划问题,本文提出了一种新的有效进化算法。首先,基于领导者的目标函数,提出了一种新的适应度函数,可以轻松地用于评估不同类型的潜在解决方案的质量。然后,基于拉丁方,构造了一个具有本地搜索能力的有效交叉算子。此外,通过使用一些良好的搜索方向设计了一个新的变异算子,以便后代可以快速地找到全局最优解。为了有效解决追随者的问题,我们在MATLAB工具箱中应用了一些有效的确定性优化算法来寻找其解决方案。证明了该算法的渐近全局收敛性。对25个测试问题的数值实验表明,该算法在大多数测试问题上的性能均优于比较算法,并且是有效且高效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号