首页> 外文期刊>INFORMS journal on computing >Constraint-Based Local Search for Inventory Control Under Stochastic Demand and Lead Time
【24h】

Constraint-Based Local Search for Inventory Control Under Stochastic Demand and Lead Time

机译:随机需求和提前期下基于约束的库存控制局部搜索

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the general multiperiod production/inventory problem with nonstationary stochastic demand and supplier lead time under service-level constraints. A replenishment cycle policy is modeled. We propose two hybrid algorithms that blend constraint programming and local search for computing near-optimal policy parameters. Both algorithms rely on a coordinate descent local search strategy; what differs is the way this strategy interacts with the constraint programming solver. These two heuristics are first, compared for small instances against an existing optimal solution method. Second, they are tested and compared with each other in terms of solution quality and run time on a set of larger instances that are intractable for the exact approach. Our numerical experiments show the effectiveness of our methods.
机译:在本文中,我们解决了服务水平约束下具有非平稳随机需求和供应商提前期的一般多周期生产/库存问题。对补货周期策略进行了建模。我们提出了两种混合算法,它们混合了约束编程和本地搜索,以计算接近最优的策略参数。两种算法都依赖于协调下降的局部搜索策略。不同之处在于该策略与约束编程求解器的交互方式。首先,将这两种启发式方法与现有的最佳解决方案方法进行比较,以进行小实例比较。其次,在一组较大的实例上对解决方案质量和运行时间进行了测试,并将它们彼此进行比较,而这对于精确方法来说是很难解决的。我们的数值实验表明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号