首页> 外文期刊>INFORMS journal on computing >Constructing Discrete Unbounded Distributions with Gaussian-Copula Dependence and Given Rank Correlation
【24h】

Constructing Discrete Unbounded Distributions with Gaussian-Copula Dependence and Given Rank Correlation

机译:构造具有高斯-库珀相关性和给定秩相关的离散无界分布

获取原文
获取原文并翻译 | 示例

摘要

A random vector X with given univariate marginals can be obtained by first applying the normal distribution function to each coordinate of a vector Z of correlated standard normals to produce a vector U of correlated uniforms over (0,1) and then transforming each coordinate of U by the relevant inverse marginal. One approach to fitting requires, separately for each pair of coordinates of X, the rank correlation, r(p), or the product-moment correlation, r_L(p), where p is the correlation of the corresponding coordinates of Z, to equal some target r~*. We prove the existence and uniqueness of a solution for any feasible target, without imposing restrictions on the marginals. For the case where r(p) cannot be computed exactly because of an infinite discrete support, the relevant infinite sums are approximated by truncation, and lower and upper bounds on the truncation errors are developed. With a function r(p) defined by the truncated sums, a bound on the error r(p~*) - r~* is given, where p~* is a solution to r(p~*) = r~*. Based on this bound, an algorithm is proposed that determines truncation points so that the solution has any specified accuracy. The new truncation method has potential for significant work reduction relative to truncating heuristically, largely because as required accuracy decreases, so does the number of terms in the truncated sums. This is quantified with examples. The gain appears to increase with the heaviness of tails.
机译:可以通过以下方法获得具有给定单变量边际的随机向量X:首先将正态分布函数应用于相关标准法线的向量Z的每个坐标,以生成(0,1)上相关均匀向量U,然后变换U的每个坐标由相关的反边际。一种拟合方法需要分别为每对X坐标将秩相关r(p)或乘积矩相关r_L(p)(其中p是Z的相应坐标的相关)相等一些目标r〜*。我们证明了任何可行目标的解决方案的存在性和唯一性,而没有对边际施加任何限制。对于由于无限离散支持而无法精确计算r(p)的情况,可以通过截断来近似相关的无限和,并得出截断误差的上下限。利用由截短的和定义的函数r(p),给出误差r(p〜*)-r〜*的界限,其中p〜*是r(p〜*)= r〜*的解。基于此界限,提出了一种确定截断点的算法,以使解决方案具有任何指定的精度。相对于启发式截断,新的截断方法具有显着减少工作量的潜力,这主要是因为随着所需精度的降低,截断总和中的项数也随之减少。通过示例进行量化。增益似乎随着尾巴的沉重而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号