首页> 外文期刊>INFORMS journal on computing >Optimal Hour-Ahead Bidding in the Real-Time Electricity Market with Battery Storage Using Approximate Dynamic Programming
【24h】

Optimal Hour-Ahead Bidding in the Real-Time Electricity Market with Battery Storage Using Approximate Dynamic Programming

机译:带有近似动态编程的电池存储的实时电力市场中的最佳提前​​小时竞价

获取原文
获取原文并翻译 | 示例

摘要

There is growing interest in the use of grid-level storage to smooth variations in supply that are likely to arise with an increased use of wind and solar energy. Energy arbitrage, the process of buying, storing, and selling electricity to exploit variations in electricity spot prices, is becoming an important way of paying for expensive investments into grid-level storage. Independent system operators such as the New York Independent System Operator (NYISO) require that battery storage operators place bids into an hour-ahead market (although settlements may occur in increments as small as five minutes, which is considered near "real-time"). The operator has to place these bids without knowing the energy level in the battery at the beginning of the hour and simultaneously accounting for the value of leftover energy at the end of the hour. The problem is formulated as a dynamic program. We describe and employ a convergent approximate dynamic programming (ADP) algorithm that exploits monotonicity of the value function to find a revenue-generating bidding policy; using optimal benchmarks, we empirically show the computational benefits of the algorithm. Furthermore, we propose a distribution-free variant of the ADP algorithm that does not require any knowledge of the distribution of the price process (and makes no assumptions regarding a specific real-time price model). We demonstrate that a policy trained on historical real-time price data from the NYISO using this distribution-free approach is indeed effective.
机译:随着风能和太阳能使用量的增加,使用网格级存储来平滑供应变化的兴趣日益浓厚。能源套利,即购买,存储和出售电力的过程,以利用电现货价格的变化,正在成为为电网级存储支付昂贵投资的一种重要方式。诸如纽约独立系统运营商(NYISO)之类的独立系统运营商要求电池存储运营商将投标书置于一个小时以上的市场中(尽管结算可能以小至五分钟的增量进行,这被认为接近“实时”) 。在小时开始时,操作员必须在不知道电池电量的情况下放置这些标书,同时在小时结束时还要考虑剩余电量的价值。该问题被表述为动态程序。我们描述并采用一种收敛的近似动态规划(ADP)算法,该算法利用价值函数的单调性来找到产生收入的出价策略;使用最佳基准,我们从经验上展示了该算法的计算优势。此外,我们提出了ADP算法的无分布变体,该变体不需要对价格过程的分布有任何了解(并且不对特定的实时价格模型做出任何假设)。我们证明,使用这种无分配方法对NYISO的历史实时价格数据进行培训的政策确实有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号