首页> 外文期刊>Information visualization >To identify what is not there: A definition of missingness patterns and evaluation of missing value visualization
【24h】

To identify what is not there: A definition of missingness patterns and evaluation of missing value visualization

机译:确定不存在的内容:缺失模式的定义和缺失值可视化的评估

获取原文
获取原文并翻译 | 示例

摘要

While missing data is a commonly occurring issue in many domains, it is a topic that has been greatly overlooked by visualization scientists. Missing data values reduce the reliability of analysis results. A range of methods exist to replace the missing values with estimated values, but their appropriateness often depend on the patterns of missingness. Increased understanding of the missingness patterns and the distribution of missing values in data may greatly improve reliability, as well as provide valuable insight into potential problems in data gathering and analyses processes, and better understanding of the data as a whole. Visualization methods have a unique possibility to support investigation and understanding of missingness patterns by making the missing values and their relationship to recorded values visible. This article provides an overview of visualization of missing data values and defines a set of three missingness patterns of relevance for understanding missingness in data. It also contributes a usability evaluation which compares visualization methods representing missing values and how well they help users identify missingness patterns. The results indicate differences in performance depending on the visualization method as well as missingness pattern. Recommendations for future design of missing data visualization are provided based on the outcome of the study.
机译:虽然缺少数据是许多域名的常见问题,但它是可视化科学家大大忽视的主题。缺少的数据值降低了分析结果的可靠性。存在一系列方法以将缺失值替换为估计值,但它们的适当性通常依赖于缺失的模式。提高对缺失模式的理解和数据中缺失值的分布可能会大大提高可靠性,并为数据收集和分析过程中的潜在问题提供有价值的洞察力,并更好地了解整个数据。可视化方法通过使缺失的值及其与记录值可见的关系来支持对缺失模式的调查和理解的独特可能性。本文概述了缺失数据值的可视化,并定义了一组三个缺失模式,以了解数据中的缺失。它还有助于可用性评估,该评估比较表示缺失值的可视化方法以及它们如何帮助用户识别缺失模式。结果表明了性能的差异,这取决于可视化方法以及缺失模式。基于研究结果提供了未来缺失数据可视化设计的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号