...
首页> 外文期刊>Image and Vision Computing >The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions
【24h】

The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions

机译:时间分辨光学层析成像的正反模型及其有限元方法解

获取原文
获取原文并翻译 | 示例
           

摘要

Time-resolved optical computerized tomographic imaging has gained widespread attention in biomedical research recently because of its non-invasiveness and non--destructiveness to biological and several attempts, aimed at implementing a practical system, have been made for eliminating the obstacles arising from multiple light scattering of biological tissue. In this paper the basic principle of lime-resolved optical absorption and scattering tomography is first presented. The diffusion approximation--based photon transport mode] in a highly scattering tissue, which offers an advantage in speed in comparison vath other stochastic models, and the procedure for solving this forward model by using the finite-element method (FEM) are then accessed. Theoretically, a commonly used iterative steepest descent algorithm for solving the inverse problem is introduced based on the FEM solution of Jacobian of the forward operator. Owing to the ill--posed Jacobian matrix of the forward operator caused by scatter-dominated photon propagation and unavoidable influence of the noise from the measurement process, a Tikhonov--Miller regularization method is applied to the inverse problem in order to provide an acceptable approximation to its solution. A universal strategy for the FEM solution to the optical tomography problem several numerically simulated images of absorbers and scatters embedded in a homogeneous tissue sample are reconstructed from either mean--time-of-flight or integrated intensity data for the verification of the approach.
机译:时间分辨光学计算机断层成像由于其对生物的非侵入性和非破坏性,最近在生物医学研究中得到了广泛的关注,并且为消除实际应用中的障碍,已经进行了一些尝试,以消除由多种光产生的障碍。生物组织的散布。本文首先介绍了石灰分辨光吸收和散射层析成像的基本原理。在高度散射的组织中基于扩散近似的光子传输模式],与其他随机模型相比,它在速度上具有优势,然后可以使用有限元方法(FEM)来求解该正向模型的过程。理论上,基于前向算子的雅可比行列式的有限元解,介绍了一种常用的迭代最速下降算法来求解反问题。由于散射占优势的光子传播和测量过程中不可避免的噪声影响导致前向算子的不适定雅可比矩阵,因此将Tikhonov-Miller正则化方法应用于反问题,以提供可接受的结果。其解决方案的近似值。 FEM解决光学层析成像问题的通用策略是从均值-飞行时间或积分强度数据重建嵌入在均匀组织样本中的吸收体和散射体的数个数值模拟图像,以验证该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号