首页> 外文期刊>Image and Vision Computing >on modelling, extraction, detection and classification of deformable contours from noisy images
【24h】

on modelling, extraction, detection and classification of deformable contours from noisy images

机译:噪声图像中可变形轮廓的建模,提取,检测和分类研究

获取原文
获取原文并翻译 | 示例

摘要

We present an integrated approach fn modelling, extracting, detecting and classifying deformable contours directly from noisy images, based on the generalized active contour models (g-snakes) [ 1 ]. Our contour representation for an arbitrary shape is stable and regenerative, as well as invariant and unique under affine motions. We combine this shape model with Markov random fields to yield prior distribution that exerts influence over the arbitrary shape while allowing for deformation. Using our formulation, low level visual tasks of shape modelling and extraction can be readily integrated with high level detection and classification.
机译:我们基于广义的主动轮廓模型(g-snakes)[1],提出了一种直接从噪声图像中建模,提取,检测和分类可变形轮廓的集成方法。我们针对任意形状的轮廓表示是稳定且可再生的,在仿射运动下不变且唯一。我们将此形状模型与Markov随机场结合起来以产生先验分布,该分布对任意形状产生影响,同时允许变形。使用我们的公式,可以轻松地将形状建模和提取的低级视觉任务与高级别的检测和分类集成在一起。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号