首页> 外文期刊>Image and Vision Computing >Intrinsic line features and contour metric for locating 3-D objects in sparse, segmented range images
【24h】

Intrinsic line features and contour metric for locating 3-D objects in sparse, segmented range images

机译:本征线特征和轮廓度量用于在稀疏的分段范围图像中定位3-D对象

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new, direct method for locating 3-D objects reliably from sparse, noisy data: segmented range images with polygonal patch boundaries. Non-iterative locating methods require accurate point correspondences, and do not tolerate significant occlusion. Therefore, we propose rules to select intrinsic contours relevant to the locating task in a multiple-object configuration. For matching intrinsic boundaries and finding correspondences, we develop a 3-D version of Arkin's contour metric using the signatures of turning and torsion angles, and extend it to contours consisting of multiple parts. The metric is robust to quantization and segmentation errors. We integrate the method into a complete system for 3-D object recognition and report on experience gained from a gantry robot test site equipped with time-of-flight laser scanners.
机译:本文提出了一种新的直接方法,可从稀疏,嘈杂的数据中可靠地定位3-D对象:具有多边形斑块边界的分段范围图像。非迭代定位方法需要精确的点对应关系,并且不能容忍明显的遮挡。因此,我们提出了在多对象配置中选择与定位任务相关的固有轮廓的规则。为了匹配固有边界并找到对应关系,我们使用转角和扭转角的特征开发了Arkin轮廓度量的3-D版本,并将其扩展到包含多个部分的轮廓。该度量标准对量化和分段错误具有鲁棒性。我们将该方法集成到一个用于3-D物体识别的完整系统中,并报告从配备飞行时间激光扫描仪的龙门机器人测试现场获得的经验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号