首页> 外文期刊>Image and Vision Computing >Genetic algorithm-based interactive segmentation of 3D medical images
【24h】

Genetic algorithm-based interactive segmentation of 3D medical images

机译:基于遗传算法的3D医学图像交互式分割

获取原文
获取原文并翻译 | 示例

摘要

This article describes a method for evolving adaptive procedures for the contour-based segmentation of anatomical structures in 3D medical data sets. With this method, the user first manually traces one or more 2D contours of an anatomical structure of interest on parallel planes arbitrarily cutting the data set. Such contours are then used as training examples for a genetic algorithm to evolve a contour detector. By applying the detector to the rest of the image sequence it is possible to obtain a full segmentation of the structure. The same detector can then be used to segment other image sequences of the same sort. Segmentation is driven by a contour-tracking strategy that relies on an elastic-contour model whose parameters are also optimized by the genetic algorithm. We report results obtained on a software-generated phantom and on real tomographic images of different sorts.
机译:本文介绍了一种为3D医学数据集中的解剖结构的基于轮廓的分割发展自适应程序的方法。使用这种方法,用户首先可以在任意切割数据集的平行平面上手动跟踪感兴趣的解剖结构的一个或多个2D轮廓。然后将这些轮廓用作遗传算法的训练示例,以发展轮廓检测器。通过将检测器应用于其余的图像序列,可以获得结构的完整分割。然后可以使用相同的检测器来分割相同种类的其他图像序列。分割由轮廓跟踪策略驱动,该策略依赖于弹性轮廓模型,其参数也通过遗传算法进行了优化。我们报告在软件生成的幻像和不同种类的真实断层图像上获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号