首页> 外文期刊>Image and Vision Computing >Improving eye movement biometrics in low frame rate eye-tracking devices using periocular and eye blinking features
【24h】

Improving eye movement biometrics in low frame rate eye-tracking devices using periocular and eye blinking features

机译:利用围眼和眼睛闪烁特征改善低框架速率追踪装置的眼球运动生物识别性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the biometric potential of eye movement patterns extracted from low frame rate eye-tracking devices is evaluated. Also, possible improvement in recognition rates is investigated using other static and dynamic features extracted from the eyes including eye blinking patterns and periocular shape features. These modalities can be applicable for specific biometric applications like continuous driver authentication for law enforcement. For this purpose, two databases are collected with two low frame rate eye-tracking systems that capture the eye movements. Data were recorded from 55 participants while watching real driving sessions. For eye gaze, features from fixations and saccades are extracted separately including duration, amplitude, and statistical features. For eye blinking, features from the blinking pattern, its speed, acceleration, and power per unit mass profiles are extracted. Periocular features include the eye-opening height, width, axial ratio, etc. Each modality is evaluated first, then, these modalities are combined in a multi-modal setup for performance improvement. While each trait achieved a moderate performance in a single-modality setup, the fusion of the static and the dynamic features from the eye provides a great performance improvement up to 98.5% recognition rate and 0% error rate in both modes of authentication. Although the single-modality setup might not be secure enough, the fusion of these traits achieves high levels of identification making these traits effective for continuous driver authentication application.(c) 2021 Elsevier B.V. All rights reserved.
机译:在本文中,评估了从低帧速率拍眼装置提取的眼球运动模式的生物识别电位。而且,使用包括眼睛闪烁图案和周边形状特征的眼睛中提取的其他静态和动态特征来研究识别率的可能改善。这些模态可以适用于特定的生物识别应用,如执法的连续驾驶员认证。为此目的,收集两个数据库,其中两个数据库采用两个低帧速率的眼睛跟踪系统,捕获眼部运动。在观看真正的驾驶会话的同时,从55名参与者记录数据。对于眼睛凝视,来自固定和扫视的特征是单独提取的,包括持续时间,幅度和统计特征。对于眼睛闪烁,从闪烁图案的特征,其速度,加速度和每个单元质量型材的功率。周边特征包括打开高度,宽度,轴向比等。首先评估每种模式,然后,这些模态在多模态设置中组合以进行性能改进。虽然每个特性在单个模态设置中实现了适度的性能,但静态和来自眼睛的动态特征的融合提供了高达98.5%的识别率和0%认证模式的识别率高。虽然单模型设置可能不够安全,但这些特征的融合可以实现高水平的识别,使这些特征有效地对连续驾驶员认证应用有效。(c)2021 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号