首页> 外文期刊>Image and Vision Computing >Out-of-region keypoint localization for 6D pose estimation
【24h】

Out-of-region keypoint localization for 6D pose estimation

机译:用于6D姿态估计的区域外关键点定位

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of instance level 6D pose estimation from a single RGB image. Our approach simultaneously detects objects and recovers poses by predicting the 2D image locations of the object's 3D bounding box vertices. Specifically, we focus on the challenge of locating virtual keypoints outside the object region proposals, and propose a boundary-based keypoint representation which incorporates classification and regression schemes to reduce output space. Moreover, our method predicts localization confidences and alleviates the influence of difficult keypoints by a voting process. We implement the proposed method based on 2D detection pipeline, meanwhile bridge the feature gap between detection and pose estimation. Our network has real-time processing capability, which runs 30 fps on a GTX 1080Ti GPU. For single object and multiple objects pose estimation on two benchmark datasets, our approach achieves competitive or superior performance compared with state-of-the-art RGB based pose estimation methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文解决了从单个RGB图像进行实例级6D姿态估计的问题。我们的方法可以同时预测物体的3D边界框顶点的2D图像位置,从而同时检测物体并恢复姿势。具体来说,我们重点关注将虚拟关键点定位在对象区域建议之外的挑战,并提出一种基于边界的关键点表示,其中结合了分类和回归方案以减少输出空间。此外,我们的方法可预测定位的置信度,并减轻投票过程中难以解决的关键点的影响。我们基于二维检测流水线实现了本文提出的方法,同时弥补了检测与姿态估计之间的特征差距。我们的网络具有实时处理能力,可在GTX 1080Ti GPU上以30 fps的速度运行。对于基于两个基准数据集的单个对象和多个对象的姿势估计,与基于RGB的最新姿势估计方法相比,我们的方法可实现竞争或更高的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号