首页> 外文期刊>Image and Vision Computing >A physics based generative adversarial network for single image defogging
【24h】

A physics based generative adversarial network for single image defogging

机译:基于物理的生成对抗网络,用于单幅图像除雾

获取原文
获取原文并翻译 | 示例

摘要

In the field of single image defogging, there are two main methods. One is the image restoration method based on the atmospheric scattering theory which can recover the image texture details well. The other is the image enhancement method based on Retinex theory which can improve the image contrast well. In practice, however, the former can easily lead to low contrast images; the latter is prone to losing texture details. Therefore, how to effectively combine the advantages of both to remove fog is a key issue in the field. In this paper, we have developed a physics based generative adversarial network (PBGAN) to exploit the advantages between those two methods in parallel. To our knowledge, it is the first learning defogging framework that incorporates these two methods and to enable them to work together and complement each other. Our method has two generative adversarial modules, the Contrast Enhancement (CE) module and the Texture Restoration (TR) module. To improve contrast in the CE module, we introduced a novel inversion-adversarial loss and a novel inversion-cycle consistency loss for training the generator. To improve the texture in the TR module, we introduced two convolutional neural networks to learn the atmospheric light coefficient and the transmission map, respectively. Extensive experiments on both synthetic and real-world datasets demonstrate that the proposed approach performs better than several state-of-the-art methods quantitatively and qualitatively. (C) 2019 Elsevier B.V. All rights reserved.
机译:在单图像除雾领域,主要有两种方法。一种是基于大气散射理论的图像恢复方法,可以很好地恢复图像纹理细节。另一种是基于Retinex理论的图像增强方法,可以很好地改善图像对比度。但是,在实践中,前者很容易导致对比度低的图像。后者易于丢失纹理细节。因此,如何有效地结合两者的优点来消除雾气是该领域的关键问题。在本文中,我们开发了一种基于物理学的生成对抗网络(PBGAN),以并行利用这两种方法之间的优势。据我们所知,这是第一个将这两种方法结合起来并使它们能够协同工作并相互补充的学习除雾框架。我们的方法有两个生成对抗性模块,对比度增强(CE)模块和纹理还原(TR)模块。为了提高CE模块中的对比度,我们引入了一种新颖的反演对抗损失和一种新颖的反演周期一致性损失来训练生成器。为了改善TR模块中的纹理,我们引入了两个卷积神经网络来分别学习大气光系数和透射图。在合成和真实数据集上进行的大量实验表明,所提出的方法在定量和定性方面比几种最新方法的性能更好。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Image and Vision Computing》 |2019年第12期|103815.1-103815.15|共15页
  • 作者单位

    Shenzhen Univ Coll Informat Engn Shenzhen Guangdong Peoples R China|Shenzhen Inst Artificial Intelligence & Robot Soc Guangdong Key Lab Intelligent Informat Proc Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Informat Engn Shenzhen Guangdong Peoples R China|Shenzhen Inst Artificial Intelligence & Robot Soc Guangdong Key Lab Intelligent Informat Proc Shenzhen 518060 Guangdong Peoples R China|Univ Nottingham Sch Comp Sci Nottingham NG7 2RD England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Single image defogging; Image restoration; Image enhancement; CycleGAN; Subjective evaluation;

    机译:单张图像除雾;图像还原;图像增强;CycleGAN;主观评价;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号