首页> 外文期刊>Image and Vision Computing >A genetic-based adaptive threshold selection method for dynamic path tree structured vector quantization
【24h】

A genetic-based adaptive threshold selection method for dynamic path tree structured vector quantization

机译:基于遗传算法的动态路径树结构矢量量化自适应阈值选择方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an improvement method for enhancing the encoding time complexity of the dynamic path tree structured vector quantization (DPTSVQ) based on the same image quality. We call it the genetic-based adaptive threshold selection method (GATSM). DPTSVQ has successfully solved the disadvantage of the multi-path TSVQ. DPTSVQ uses a critical function and a fixed threshold to judge whether the number of search paths can be increased. However, in some cases, the fixed threshold scheme also brings the problem of increasing the encoding time. We thus propose GATSM to solve this problem by using a set of images to train the thresholds for adapting their real practical need. Our experimental results show that the encoding time complexity of GATSM is superior to DPTSVQ based on the same image quality. In addition, we compare the image quality of GATSM with the encoding algorithm with fast comparison (EAWFC) based on the same encoding time. Comparison results show that GATSM provides better image quality than that of EAWFC.
机译:本文提出了一种基于相同图像质量提高动态路径树结构化矢量量化(DPTSVQ)编码时间复杂度的改进方法。我们称其为基于遗传的自适应阈值选择方法(GATSM)。 DPTSVQ已成功解决了多路径TSVQ的缺点。 DPTSVQ使用关键函数和固定阈值来判断是否可以增加搜索路径的数量。然而,在某些情况下,固定阈值方案还带来了增加编码时间的问题。因此,我们建议GATSM通过使用一组图像来训练阈值以适应其实际需求来解决该问题。我们的实验结果表明,基于相同的图像质量,GATSM的编码时间复杂度优于DPTSVQ。此外,我们在相同的编码时间下,将GATSM的图像质量与带有快速比较(EAWFC)的编码算法进行比较。比较结果表明,GATSM提供的图像质量比EAWFC更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号