首页> 外文期刊>Image and Vision Computing >A view-based statistical system for multi-view face detection and pose estimation
【24h】

A view-based statistical system for multi-view face detection and pose estimation

机译:基于视图的统计系统,用于多视图面部检测和姿势估计

获取原文
获取原文并翻译 | 示例

摘要

This study develops a novel statistical system for automatic multi-view face detection and pose estimation. The five-module detection system is based on significant local facial features (or subregions) rather than the entire face. The low- and high-frequency feature information of each subregion of the facial image are extracted and projected onto the eigenspace and residual independent basis space in order to create the corresponding PCA (principal component analysis) projection weight vector and ICA (independent component analysis) coefficient vector, respectively. Therefore, the proposed system has an improved tolerance toward different facial expressions, wide viewing angles, partial occlusions and lighting conditions. Furthermore, either projection weight vectors or coefficient vectors in the PCA or ICA space have divergent distributions and are therefore modeled by using the weighted Gaussian mixture model (GMM) rather than a single Gaussian model. The GMM weights and parameters of the GMM are estimated iteratively using the Expectation-Maximization (EM) algorithm. Face detection is then performed by conducting a likelihood evaluation process based on the estimated joint probability of the weight and coefficient vectors and the corresponding geometric positions of the subregions. The use of subregion position information can reduce the risk of false acceptances. Moreover, simple cascaded rejecter module is employed to exclude 85% of the non-face images in order to enhance the overall system performance. The computational overhead is further reduced by eliminating the requirement for a residual image reconstruction process in the ICA process. Finally, the performance of the proposed system is evaluated using challenging databases. The results not only demonstrate the ability of the system to automatically identify facial images with a high degree of accuracy, but also verify its ability to estimate the fine pose angles with 5° precision and an over 90% accuracy rate.
机译:这项研究开发了一种新颖的统计系统,用于自动多视角人脸检测和姿态估计。五模块检测系统基于重要的局部面部特征(或子区域)而不是整个面部。提取面部图像每个子区域的低频和高频特征信息,并将其投影到本征空间和残差独立基空间上,以创建相应的PCA(主成分分析)投影权重向量和ICA(独立成分分析)系数向量。因此,所提出的系统对不同的面部表情,宽视角,部分遮挡和照明条件具有更好的耐受性。此外,PCA或ICA空间中的投影权重向量或系数向量具有发散分布,因此可以通过使用加权高斯混合模型(GMM)而不是单个高斯模型来建模。 GMM权重和GMM参数使用期望最大化(EM)算法进行迭代估算。然后,通过基于权重和系数矢量的估计联合概率以及子区域的相应几何位置,通过进行似然评估过程来执行面部检测。使用次区域位置信息可以减少错误接受的风险。此外,为了增强整体系统性能,采用了简单的级联剔除器模块来排除85%的非面部图像。通过消除在ICA处理中对残留图像重建处理的需求,进一步减少了计算开销。最后,使用具有挑战性的数据库评估所提出系统的性能。结果不仅证明了该系统能够以高准确度自动识别面部图像的能力,而且还证明了其以5°的精度和超过90%的准确率估算精细姿态角的能力。

著录项

  • 来源
    《Image and Vision Computing》 |2009年第9期|1252-1271|共20页
  • 作者单位

    Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC;

    Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    face detection; pose estimation;

    机译:人脸检测姿势估计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号