首页> 外文期刊>Image and Vision Computing >Visual tracking using the Earth Mover's Distance between Gaussian mixtures and Kalman filtering
【24h】

Visual tracking using the Earth Mover's Distance between Gaussian mixtures and Kalman filtering

机译:使用高斯混合物与卡尔曼滤波之间的地球移动器距离进行视觉跟踪

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we demonstrate how the differential Earth Mover's Distance (EMD) may be used for visual tracking in synergy with Gaussian mixtures models (GMM). According to our model, motion between adjacent frames results in variations of the mixing proportions of the Gaussian components representing the object to be tracked. These variations are computed in closed form by minimizing the differential EMD between Gaussian mixtures, yielding a very fast algorithm with high accuracy, without recurring to the EM algorithm in each frame. Moreover, we also propose a framework to handle occlusions, where the prediction for the object's location is forwarded to an adaptive Kalman filter whose parameters are estimated on line by the motion model already observed. Experimental results show significant improvement in tracking performance in the presence of occlusion.
机译:在本文中,我们演示了如何与高斯混合模型(GMM)协同使用差分地球移动器距离(EMD)进行视觉跟踪。根据我们的模型,相邻帧之间的运动导致代表要跟踪的对象的高斯分量的混合比例发生变化。通过最小化高斯混合之间的差分EMD,以封闭形式计算这些变化,从而产生了一种非常快速,高精度的算法,而无需在每个帧中重复执行EM算法。此外,我们还提出了一个处理遮挡的框架,其中将对物体位置的预测转发到自适应卡尔曼滤波器,其参数由已经观察到的运动模型在线估计。实验结果表明,在存在遮挡的情况下,跟踪性能有了显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号