首页> 外文期刊>Image and Vision Computing >Approaches for automatic low-dimensional human shape refinement with priors or generic cues using RGB-D data
【24h】

Approaches for automatic low-dimensional human shape refinement with priors or generic cues using RGB-D data

机译:使用RGB-D数据通过先验或通用线索自动进行低维人体形状细化的方法

获取原文
获取原文并翻译 | 示例

摘要

Some human detection or tracking algorithms output a low-dimensional representation of the human body, such as a bounding box. Even though this representation is enough for some tasks, a more accurate and detailed point-wise representation of the human body is more useful for pose estimation and action recognition. The refinement process can produce a point-wise mask of the human body from its low-dimensional representation. In this paper, we tackle the problem of refining low-dimensional human shapes using RGB-D data with a novel and accurate method for this purpose. This algorithm combines low-level cues such as shape and color, and high level observations such as the estimated ground plane, in a multi-layer graph cut framework. In our algorithm, shape prior information is learned by training a classifier. Unlike some existing work, our method does not utilize or carry features from the internal steps of the methods which provide the bounding box, so our method can work on the outputs of any similar shape providers. Extensive experiments demonstrate that the proposed technique significantly outperforms other suitable methods. Moreover, a previously published refinement method is extended by incorporating more generic cues to serve this purpose. (C) 2015 Elsevier B.V. All rights reserved.
机译:一些人体检测或跟踪算法会输出人体的低维表示,例如边界框。即使此表示足以完成某些任务,但更准确,详细的人体逐点表示对于姿势估计和动作识别更有用。细化过程可以从人体的低维度表示中生成点状蒙版。在本文中,我们通过一种新颖而准确的方法解决了使用RGB-D数据细化低维人体形状的问题。该算法在多层图形切割框架中结合了诸如形状和颜色之类的低级提示以及诸如估计的地平面之类的高级别观测值。在我们的算法中,形状先验信息是通过训练分类器来学习的。与某些现有工作不同,我们的方法不利用或不提供提供边界框的方法内部步骤中的特征,因此我们的方法可以处理任何类似形状提供者的输出。大量的实验表明,提出的技术明显优于其他合适的方法。此外,通过结合更多通用提示来扩展先前发布的优化方法以实现此目的。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号