首页> 外文期刊>Image and Vision Computing >Incorporating higher order models for occlusion resilient motion segmentation in streaming videos
【24h】

Incorporating higher order models for occlusion resilient motion segmentation in streaming videos

机译:在流视频中合并用于遮挡弹性运动分割的高阶模型

获取原文
获取原文并翻译 | 示例

摘要

Video segmentation is a fundamental problem in computer vision and aims to extract meaningful entities from a video. One of the most useful cues in this quest is motion as is described by the trajectories of tracked points. In this paper we present a motion segmentation method attempting to address some of the major issues in the area. Namely, we propose an efficient framework where more complex motion models can be seamlessly integrated both maintaining computational tractability and not penalizing non translational motion. Moreover, we expose in depth the problem of object leakage due to occlusion and highlight that motion segmentation could be treated as a graph coloring problem. Our algorithm uses an approach based on graph theory and resolves occlusion cases in a robust manner. To endow our method with scalability, we follow the previously presented subsequence architecture and test it in a streaming setup. Extensive experiments demonstrate the flexibility and robustness of the method. The segmentation results are competitive compared to the state of the art. (C) 2015 Elsevier B.V. All rights reserved.
机译:视频分割是计算机视觉中的一个基本问题,旨在从视频中提取有意义的实体。在该任务中最有用的提示之一是运动,如跟踪点的轨迹所描述。在本文中,我们提出了一种运动分割方法,试图解决该领域中的一些主要问题。即,我们提出了一个有效的框架,其中可以无缝集成更复杂的运动模型,既保持计算的可处理性,又不损害非平移运动。此外,我们深入揭示了由于遮挡而导致的对象泄漏问题,并强调了运动分割可以视为图形着色问题。我们的算法使用基于图论的方法,并以鲁棒的方式解决遮挡情况。为了使我们的方法具有可扩展性,我们遵循前面介绍的子序列体系结构,并在流式设置中对其进行测试。大量实验证明了该方法的灵活性和鲁棒性。与现有技术相比,分割结果具有竞争力。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号