首页> 外文期刊>Image Processing, IET >Image fusion technique based on non-subsampled contourlet transform and adaptive unit-fast-linking pulse-coupled neural network
【24h】

Image fusion technique based on non-subsampled contourlet transform and adaptive unit-fast-linking pulse-coupled neural network

机译:基于非下采样contourlet变换和自适应单元快速链接脉冲耦合神经网络的图像融合技术

获取原文
获取原文并翻译 | 示例

摘要

A new image fusion technique based on non-subsampled contourlet transform (NSCT) and adaptive unit-fast-linking pulse-coupled neural network (PCNN) is presented. By using NSCT, multi-scale and multi-direction sparse decompositions of the source images are performed. Then, the basic PCNN model is improved to be an adaptive unit-fast-linking PCNN model, which synthesises the advantages of both unit-linking PCNN and fast-linking PCNN. The novel PCNN model utilises the clarity of each pixel in images as the linking strength b; moreover, the time matrix T of the sub-images can be obtained via the synchronous pulse burst property. Finally, the sub-images are fused by analysing the time matrix T and linking strength b. The experimental results show that the proposed approach is better than some current methods.
机译:提出了一种基于非下采样轮廓波变换(NSCT)和自适应单元快速链接脉冲耦合神经网络(PCNN)的图像融合新技术。通过使用NSCT,可以对源图像进行多尺度和多方向的稀疏分解。然后,将基本的PCNN模型改进为自适应的单位快速链接PCNN模型,该模型综合了单位链接PCNN和快速链接PCNN的优点。新颖的PCNN模型利用图像中每个像素的清晰度作为链接强度b;此外,可以通过同步脉冲猝发特性获得子图像的时间矩阵T。最后,通过分析时间矩阵T和链接强度b来融合子图像。实验结果表明,该方法优于目前的一些方法。

著录项

  • 来源
    《Image Processing, IET》 |2011年第2期|p.113-121|共9页
  • 作者

  • 作者单位

    Department of Computer Engineering, Missile Institute, Air Force Engineering University, Sanyuan Xi'an, Shaanxi 713800, People's Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号