首页> 外文期刊>Image Processing, IET >Benchmarking of wildland fire colour segmentation algorithms
【24h】

Benchmarking of wildland fire colour segmentation algorithms

机译:野火颜色分割算法的基准测试

获取原文
获取原文并翻译 | 示例

摘要

Recently, computer vision-based methods have started to replace conventional sensor-based fire detection technologies. In general, visible band image sequences are used to automatically detect suspicious fire events in indoor or outdoor environments. There are several methods which aim to achieve automatic fire detection on visible band images, however, it is difficult to identify which method is the best performing as there is no fire image dataset which can be used to test the different methods. This study presents a benchmarking of state of the art wildland fire colour segmentation algorithms using a new fire dataset introduced for the first time. The dataset contains images of wildland fire in different contexts (fuel, background, luminosity, smoke etc.). All images of the dataset are characterised according to the principal colour of the fire, the luminosity, and the presence of smoke in the fire area. With this characterisation, it has been possible to determine on which kind of images each algorithm is efficient. Also a new probabilistic fire segmentation algorithm is introduced and compared to the other techniques. Benchmarking is performed in order to assess performances of 12 algorithms that can be used for the segmentation of wildland fire images.
机译:最近,基于计算机视觉的方法已开始取代传统的基于传感器的火灾探测技术。通常,可见波段图像序列用于自动检测室内或室外环境中的可疑火灾事件。有几种旨在在可见波段图像上实现自动火灾检测的方法,但是,由于没有可用于测试不同方法的火灾图像数据集,因此很难确定哪种方法性能最佳。这项研究使用首次引入的新火灾数据集,提供了对最先进的荒地火灾颜色分割算法的基准测试。数据集包含不同环境(燃料,背景,光度,烟气等)中的野火图像。数据集的所有图像均根据火灾的主要颜色,亮度和火灾区域中烟雾的存在来表征。通过这种表征,有可能确定每种算法对哪种图像有效。还介绍了一种新的概率火灾分割算法,并将其与其他技术进行了比较。进行基准测试是为了评估可用于野火图像分割的12种算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号