首页> 外文期刊>Image Processing, IET >Information fusion from multiple cameras for gait-based re-identification and recognition
【24h】

Information fusion from multiple cameras for gait-based re-identification and recognition

机译:来自多个摄像机的信息融合,用于基于步态的重新识别和识别

获取原文
获取原文并翻译 | 示例

摘要

In this study, the authors present a fully automated frontal (i.e. employing front and back views only) gait recognition approach using the depth information captured by multiple Kinect RGB-D cameras. Limited depth sensing range restricts each of these Kinects to record only a part of a complete gait cycle of a walking subject. Hence, information from more than one Kinect is fused together to examine which features of a gait cycle can be conveniently extracted from the sequences captured independently by these cameras. To achieve this, it is imperative that the same subject be re-identified as he moves from the field of view of one camera to another. The authors use a set of soft-biometric features computed from the skeleton stream provided by Kinect software development kit) for doing automatic re-identification. To enable such information fusion and also to handle missing components even after re-identification, features are extracted at the granularity of small fractions of a gait cycle. Experiments carried out on a data set with gait videos captured by Kinects respectively from the back and front views show promising results.
机译:在这项研究中,作者提出了一种使用多个Kinect RGB-D摄像机捕获的深度信息的全自动正面(即仅使用正视图和后视图)步态识别方法。有限的深度感应范围限制了这些Kinect中的每一个仅记录步行对象完整步态周期的一部分。因此,将来自一个以上Kinect的信息融合在一起,以检查可以方便地从这些摄像机独立捕获的序列中提取步态周期的哪些特征。为了实现这一点,当同一对象从一台摄像机的视野移至另一台摄像机的视野时,必须重新识别该对象。作者使用从Kinect软件开发工具包提供的骨架流中计算出的一组软生物学特征进行自动重新识别。为了实现这种信息融合并即使在重新识别后也能处理丢失的组件,以步态周期的一小部分的粒度提取特征。对数据集进行的实验分别由Kinects从后视图和前视图捕获的步态视频显示,结果令人鼓舞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号