首页> 外文期刊>Image Processing, IET >Vehicle logo recognition by weighted multi-class support vector machine ensembles based on sharpness histogram features
【24h】

Vehicle logo recognition by weighted multi-class support vector machine ensembles based on sharpness histogram features

机译:基于清晰度直方图特征的加权多类支持向量机集合对车辆标志的识别

获取原文
获取原文并翻译 | 示例

摘要

Classical methods recognise vehicle logos with image feature matching approaches. Different from these methods, this study proposes a novel algorithm to recognise the vehicle logos in real time by constructing the weighted multi-class support vector machine (SVM) ensemble model to classify the vehicle logos based on sharpness histogram features. To evaluate the performance of the proposed algorithm, extensive experiments have been performed. Experimental results indicate that the sharpness histogram features proposed by the authors has better distinguishability than colour histogram features. Moreover, they show that the proposed algorithm has the best average recognition performance, and its performance is the most robust. Conveniently, the proposed algorithm can avoid the burden of choosing the appropriate kernel function and parameters comparing with multi-class SVM model.
机译:经典方法通过图像特征匹配方法识别车辆徽标。与这些方法不同,本研究提出了一种新的算法,该算法可通过构建加权多类支持向量机(SVM)集成模型来基于锐度直方图特征对车辆徽标进行实时识别。为了评估所提出算法的性能,已经进行了广泛的实验。实验结果表明,作者提出的清晰度直方图特征比颜色直方图特征具有更好的可分辨性。而且,它们表明所提出的算法具有最佳的平均识别性能,并且其性能是最鲁棒的。与多类支持向量机模型相比,该算法可以方便地避免选择适当的内核函数和参数的负担。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号