首页> 外文期刊>Image Processing, IET >Estimating just-noticeable distortion for images/videos in pixel domain
【24h】

Estimating just-noticeable distortion for images/videos in pixel domain

机译:估计像素域中图像/视频的明显失真

获取原文
获取原文并翻译 | 示例

摘要

Existing pixel-based just noticeable distortion (JND) models only take into account luminance adaptation and texture masking (TM). Similarly, existing discrete cosine transform (DCT) based models do not take into account foveal vision effects and do not estimate TM efficiently. As human visual system (HVS) is not sensitive to distortion below the JND threshold, estimation of the perceptual visibility threshold is widely used in digital and video processing applications. The authors propose a comprehensive and efficient pixel-based JND model incorporating all major factors which contribute to the JND estimation. The evaluation of contrast masking (CM) is done by distinguishing the edge and TM with respect to the entropy masking properties of the HVS. Similarly, the foveal vision effects are also taken into account for the comprehensive estimation of contrast sensitivity function (CSF). Hence, the proposed pixel-based JND model incorporates the spatio-temporal CSF, foveal vision effects, influence of eye-movement, luminance adaptation and CM to be more consistent with human perception. The incorporation of these important factors makes the proposed model the most comprehensive and efficient in the current literature. Psychophysical experiments were performed to test the proposed model. The results show the proposed model comprehensively outperforms other existing models proving its efficiency.
机译:现有的基于像素的仅明显失真(JND)模型仅考虑亮度适应和纹理遮罩(TM)。类似地,现有的基于离散余弦变换(DCT)的模型没有考虑中央凹视觉影响,也没有有效地估计TM。由于人类视觉系统(HVS)对低于JND阈值的失真不敏感,因此感知可见性阈值的估计已广泛用于数字和视频处理应用中。作者提出了一个综合有效的基于像素的JND模型,该模型结合了有助于JND估计的所有主要因素。对比蒙版(CM)的评估是通过区分边缘和TM相对于HVS的熵蒙版属性来完成的。同样,对中央凹视觉效果也要考虑到对比度敏感度功能(CSF)的综合估计中。因此,所提出的基于像素的JND模型结合了时空CSF,中央凹视觉效果,眼睛运动的影响,亮度适应和CM,以更符合人类的感知。这些重要因素的结合使所提出的模型在当前文献中最为全面和有效。进行了心理物理实验以测试所提出的模型。结果表明,所提出的模型在整体上优于其他现有模型,证明了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号