首页> 外文期刊>Image Processing, IET >Sparse patch-based representation with combined information of atlas for multi-atlas label fusion
【24h】

Sparse patch-based representation with combined information of atlas for multi-atlas label fusion

机译:基于稀疏补丁的表示形式与地图集的组合信息,用于多地图集标签融合

获取原文
获取原文并翻译 | 示例

摘要

To obtain a higher accuracy in the multi-atlas patch-based label fusion method, it is essential to have the accurate similarity measure of selected patches. In this study, the authors propose a new sparse patch-based representation method using a local binary texture (LBT) in the atlas image and atlas label information for the multi-atlas label fusion. In the proposed method, the intensity information in a patch is converted into a LBT which is then combined with the labels of corresponding patches from the atlas to form an atom of a dictionary. The initial labels of target images are estimated through a rough segmentation. The voxel in a patch to be labelled is also constructed as a vector similar to the atom. The voxel vector is then modelled as a sparse linear combination of the atoms in the dictionary. Experimental results on two MR brain data sets demonstrated that the proposed method is efficient in the segmentation which can achieve competitive performance compared with the state-of-the-art methods.
机译:为了在基于多图集补丁的标签融合方法中获得更高的准确性,必须对所选补丁进行准确的相似性度量。在这项研究中,作者提出了一种新的基于稀疏补丁的表示方法,该方法使用Atlas图像中的局部二进制纹理(LBT)和Atlas标签信息进行多地图集标签融合。在所提出的方法中,将补丁中的强度信息转换为LBT,然后将其与来自图集的相应补丁的标签合并,以形成字典的原子。通过粗略分割来估计目标图像的初始标签。还可以将待标记贴剂中的体素构造成类似于原子的载体。然后将体素矢量建模为字典中原子的稀疏线性组合。在两个MR大脑数据集上的实验结果表明,与最新方法相比,该方法在分割方面是有效的,可以实现竞争性能。

著录项

  • 来源
    《Image Processing, IET》 |2018年第8期|1345-1353|共9页
  • 作者单位

    School of Computer Science and Technology, Huazhong University of Science and Technology, People's Republic of China;

    School of Computer Science and Technology, Huazhong University of Science and Technology, People's Republic of China;

    School of Computer Science and Technology, Huazhong University of Science and Technology, People's Republic of China;

    School of Computer Science and Technology, Huazhong University of Science and Technology, People's Republic of China;

    School of Computer Science and Technology, Huazhong University of Science and Technology, People's Republic of China;

    Kennesaw State University, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    biomedical MRI; brain; image classification; image fusion; image representation; image segmentation; medical image processing;

    机译:生物医学MRI;脑;图像分类;图像融合;图像表示;图像分割;医学图像处理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号