首页> 外文期刊>Image Processing, IET >Subpixel image registration regularised by l1 and l2 norms
【24h】

Subpixel image registration regularised by l1 and l2 norms

机译:Subpixel图像通过L1和L2规范进行规范化

获取原文
获取原文并翻译 | 示例

摘要

In this study, the authors propose a subpixel image registration framework that detects and matches feature points. Rigid and nonrigid registration models are employed to solve the problem of subpixel image registration problem. A rigid registration model based on the l(2) norm is proposed to regularise the rotation coefficients using the indicator function to estimate the rigid transformation parameters. The latter estimation simplified is made easy by the reduction in the rigid transformation from two dimensions to one dimension. Furthermore, a non-rigid registration model based on the l(1) and l(2) norms is proposed to estimate the elastic coefficients of the compact support radial basis functions. Due to the linear representation of the transformation function, the rigid and nonrigid subpixel image registration models can be solved efficiently using the fast iterative shrinkage-thresholding algorithm. Experiments on a demosaicing data set, the ocean of remote sensing data set, a brain data set and the fundus image registration data set show that the proposed rigid and non-rigid registration models can accurately perform subpixel image registration.
机译:在这项研究中,作者提出了一种亚像素图像登记框架,其检测和匹配特征点。使用刚性和非刚性注册模型来解决子像素图像配准问题的问题。提出了一种基于L(2)规范的刚性登记模型,用于使用指示器函数规范旋转系数来估计刚性变换参数。通过从两个维度到一个尺寸的刚性变换的刚性变换的减小,简化了后一估计。此外,提出了一种基于L(1)和L(2)规范的非刚性登记模型来估计紧凑型支撑径向基函数的弹性系数。由于变换函数的线性表示,可以使用快速迭代收缩阈值算法有效地解决刚性和非刚性子像素图像登记模型。在Demosaicated数据集上进行实验,遥感数据集的海洋,大脑数据集和眼底图像登记数据集表明,所提出的刚性和非刚性登记模型可以准确地执行子像素图像配准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号