首页> 外文期刊>Image Processing, IET >Image copy-move forgery detection using sparse recovery and keypoint matching
【24h】

Image copy-move forgery detection using sparse recovery and keypoint matching

机译:使用稀疏恢复和关键点匹配的图像复制 - 移动伪造检测

获取原文
获取原文并翻译 | 示例

摘要

Copy-move forgery (CMF) detection is one of the most practical problems in image forensics. The authenticity of the image becomes more crucial when the images are used in the criminal investigations, intelligence services, and medical documentations. In this study, the authors suggest a CMF detection algorithm. At first they they suggest to use a sparse recovery algorithm to identify the suspicious segments. To incorporate the colour information of the image segments, they propose to compare the histograms of the identified segments to detect the similar ones. The keypoints of those parts are obtained and the matched ones are located. In the last step, they suggest a morphology scheme to extract the forged region. They have evaluated the proposed method in the detection of various forged images. The simulation results reveal the forgery detection capabilities of the suggested algorithm compared to the other state-of-the-art schemes. The proposed method has superiority over its counterparts in detecting the scaled forgeries. Moreover, the sparse recovery step enables the proposed algorithm to remove the genuine repeated patterns of the image, while the other CMF detection techniques wrongly consider those parts as a forgery. Furthermore, the proposed scheme is on-average faster than the other schemes.
机译:复制 - 移动伪造(CMF)检测是图像取证中最实际的问题之一。当图像用于刑事调查,情报服务和医疗文件时,图像的真实性变得更加重要。在本研究中,作者提出了一种CMF检测算法。首先,他们建议使用稀疏的恢复算法来识别可疑段。为了结合图像段的颜色信息,他们建议将所识别的段的直方图进行比较以检测类似的段。获得这些部件的关键点,并且位于匹配的关键点。在最后一步中,他们建议提取伪造区域的形态学方案。它们在检测各种伪造图像中评估了所提出的方法。仿真结果揭示了建议算法的伪造检测能力与其他最先进的方案相比。所提出的方法在检测缩放的锻造方面的对应物中具有优越性。此外,稀疏恢复步骤使得所提出的算法能够去除图像的真正重复模式,而另一个CMF检测技术错误地将这些部件视为伪造。此外,所提出的方案比其他方案平均更快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号