首页> 外文期刊>Image Processing, IET >Efficient coarser-to-fine holistic traffic sign detection for occlusion handling
【24h】

Efficient coarser-to-fine holistic traffic sign detection for occlusion handling

机译:有效的从粗到细的整体交通标志检测,用于遮挡处理

获取原文
获取原文并翻译 | 示例

摘要

In this study, the authors present a new efficient method based on discriminative patches (d-patches) for holistic traffic sign detection with occlusion handling. Traffic sign detection is an important part in autonomous driving, but usually hampered by the occlusions encountered on roads. They propose a method which basically upgrades d-patches by integrating vocabulary learning features. Consequently, d-patches are more discriminatively trained for robust occlusion handling. In addition, a holistic classifier is trained on d-patches, which identify those regions where occlusion exists. This results in higher confidence-score for the regions which contain traffic signs and lower confidence-score for the regions containing occlusions. Furthermore, they also propose a new coarser-to-fine (CTF) approach to speed up the traffic sign detection process. CTF minimises the use of traditional sliding window for object detection. It relies on colour variance to search the regions with high probability of traffic sign presence. Sliding window is used only on the selected high probability regions. The proposed method achieves 100% detection results on German Traffic Sign Detection Benchmark and performs 2.2% better than the previous state-of-the-art methods on Korean Traffic Sign Detection dataset, under partially occluded settings. By using CTF approach, five times speedup with a marginal loss in accuracy can be achieved.
机译:在这项研究中,作者提出了一种基于区分性补丁(d-patches)的新型有效方法,用于具有遮挡处理的整体交通标志检测。交通标志检测是自动驾驶中的重要组成部分,但通常会受到道路遇到的障碍物的阻碍。他们提出了一种通过整合词汇学习功能来基本升级d-patches的方法。因此,对d-patches进行了更具区别性的培训,以进行更强大的遮挡处理。另外,对整体分类器进行d补丁训练,这些补丁可识别存在遮挡的区域。这导致包含交通标志的区域的置信度得分较高,而包含遮挡区域的置信度得分较低。此外,他们还提出了一种新的从粗到精(CTF)的方法来加快交通标志检测过程。 CTF最大限度地减少了使用传统的滑动窗口进行物体检测。它依靠颜色变化来搜索具有交通标志存在可能性的区域。滑动窗口仅在选定的高概率区域上使用。在部分遮挡的情况下,该方法在德国交通标志检测基准上达到100%的检测结果,并且比韩国交通标志检测数据集上的最新技术要好2.2%。通过使用CTF方法,可以实现5倍的加速,但精度会略有下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号