首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction
【24h】

Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction

机译:脂质壳的理化性质对超声诱导的微泡破坏的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We present the first study of the effects of monolayer shell physicochemical properties on the destruction of lipid-coated microbubbles during insonification with single, one-cycle pulses at 2.25 MHz and low-duty cycles. Shell cohesiveness was changed by varying phospholipid and emulsifier composition, and shell microstructure was controlled by postproduction processing. Individual microbubbles with initial resting diameters between 1 and 10 /spl mu/m were isolated and recorded during pulsing with brightfield and fluorescence video microscopy. Microbubble destruction occurred through two modes: acoustic dissolution at 400 and 600 kPa and fragmentation at 800 kPa peak negative pressure. Lipid composition significantly impacted the acoustic dissolution rate, fragmentation propensity, and mechanism of excess lipid shedding. Less cohesive shells resulted in micron-scale or smaller particles of excess lipid material that shed either spontaneously or on the next pulse. Conversely, more cohesive shells resulted in the buildup of shell-associated lipid strands and globular aggregates of several microns in size; the latter showed a significant increase in total shell surface area and lability. Lipid-coated microbubbles were observed to reach a stable size over many pulses at intermediate acoustic pressures. Observations of shell microstructure between pulses allowed interpretation of the state of the shell during oscillation. We briefly discuss the implications of these results for therapeutic and diagnostic applications involving lipid-coated microbubbles as ultrasound contrast agents and drug/gene delivery vehicles.
机译:我们目前对单层壳的理化性质对声波作用下的脂质包裹的微泡破坏的影响进行了首次研究,该脉冲在2.25 MHz的单周期脉冲和低占空比下发生。通过改变磷脂和乳化剂的组成来改变壳的内聚力,并通过后期生产工艺来控制壳的微观结构。分离出初始静息直径在1和10 / spl mu / m之间的单个微气泡,并在脉冲过程中使用明场和荧光视频显微镜进行记录。微泡破坏通过两种模式发生:400 kPa和600 kPa时的声波溶解和800 kPa峰值负压下的破碎。脂质组成显着影响声学溶解速率,碎裂倾向和过量脂质脱落的机制。较少的内聚壳导致微米级或更小的多余脂质物质的颗粒,它们自发或在下一脉冲时脱落。相反,更多的具有粘性的壳导致与壳相关的脂质链和几微米大小的球状聚集体的聚集。后者显示出总的壳表面积和不稳定性显着增加。观察到脂质包裹的微泡在中等声压下的许多脉冲下达到稳定的大小。观察脉冲之间的壳微观结构可以解释振荡过程中壳的状态。我们简要讨论了这些结果对涉及脂质涂层微泡作为超声造影剂和药物/基因传递载体的治疗和诊断应用的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号