首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Recursive three-dimensional model reconstruction based on Kalman filtering
【24h】

Recursive three-dimensional model reconstruction based on Kalman filtering

机译:基于卡尔曼滤波的递归三维模型重构

获取原文
获取原文并翻译 | 示例

摘要

A recursive two-step method to recover structure and motion from image sequences based on Kalman filtering is described in this paper. The algorithm consists of two major steps. The first step is an extended Kalman filter (EKF) for the estimation of the object's pose. The second step is a set of EKFs, one for each model point, for the refinement of the positions of the model features in the three-dimensional (3-D) space. These two steps alternate from frame to frame. The initial model converges to the final structure as the image sequence is scanned sequentially. The performance of the algorithm is demonstrated with both synthetic data and real-world objects. Analytical and empirical comparisons are made among our approach, the interleaved bundle adjustment method, and the Kalman filtering-based recursive algorithm by Azarbayejani and Pentland. Our approach outperformed the other two algorithms in terms of computation speed without loss in the quality of model reconstruction.
机译:本文介绍了一种基于卡尔曼滤波的从图像序列恢复结构和运动的递归两步法。该算法包括两个主要步骤。第一步是扩展卡尔曼滤波器(EKF),用于估计物体的姿势。第二步是一组EKF,每个模型点一个,以完善模型特征在三维(3-D)空间中的位置。这两个步骤逐帧交替。当顺序扫描图像序列时,初始模型收敛到最终结构。合成数据和实际对象都证明了该算法的性能。在我们的方法,交错束调整方法和Azarbayejani和Pentland基于卡尔曼滤波的递归算法之间进行了分析和经验比较。我们的方法在计算速度方面优于其他两种算法,而不会损失模型重建的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号