首页> 外文期刊>IEEE Transactions on Signal Processing >A combined self-organizing feature map and multilayer perceptron for isolated word recognition
【24h】

A combined self-organizing feature map and multilayer perceptron for isolated word recognition

机译:结合的自组织特征图和多层感知器用于孤立词识别

获取原文
获取原文并翻译 | 示例

摘要

A neural network system which combines a self-organizing feature map and multilayer perception for the problem of isolated word speech recognition is presented. A new method combining self-organization learning and K-means clustering is used for the training of the feature map, and an efficient adaptive nearby-search coding method based on the 'locality' of the self-organization is designed. The coding method is shown to save about 50% computation without degradation in recognition rate compared to full-search coding. Various experiments for different choices of parameters in the system were conducted on the TI 20 word database with best recognition rates as high as 99.5% for both speaker-dependent and multispeaker-dependent tests.
机译:提出了一种结合自组织特征图和多层感知的神经网络系统,用于孤立词语音识别问题。一种结合自组织学习和K均值聚类的新方法用于特征图的训练,并设计了一种基于自组织“局部性”的高效自适应邻近搜索编码方法。与全搜索编码相比,该编码方法可节省约50%的计算量,而不会降低识别率。在TI 20字数据库上针对系统中不同参数选择进行了各种实验,对于说话者相关测试和多说话者相关测试,最佳识别率高达99.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号