首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Exploiting the Self-Similarity in ERP Images by Nonlocal Means for Single-Trial Denoising
【24h】

Exploiting the Self-Similarity in ERP Images by Nonlocal Means for Single-Trial Denoising

机译:通过非本地手段对ERP图像的自相似性进行单次去噪处理

获取原文
获取原文并翻译 | 示例

摘要

Event related potentials (ERPs) represent a noninvasive and widely available means to analyze neural correlates of sensory and cognitive processing. Recent developments in neural and cognitive engineering proposed completely new application fields of this well-established measurement technique when using an advanced single-trial processing. We have recently shown that 2-D diffusion filtering methods from image processing can be used for the denoising of ERP single-trials in matrix representations, also called ERP images. In contrast to conventional 1-D transient ERP denoising techniques, the 2-D restoration of ERP images allows for an integration of regularities over multiple stimulations into the denoising process. Advanced anisotropic image restoration methods may require directional information for the ERP denoising process. This is especially true if there is a lack of a priori knowledge about possible traces in ERP images. However due to the use of event related experimental paradigms, ERP images are characterized by a high degree of self-similarity over the individual trials. In this paper, we propose the simple and easy to apply nonlocal means method for ERP image denoising in order to exploit this self-similarity rather than focusing on the edge-based extraction of directional information. Using measured and simulated ERP data, we compare our method to conventional approaches in ERP denoising. It is concluded that the self-similarity in ERP images can be exploited for single-trial ERP denoising by the proposed approach. This method might be promising for a variety of evoked and event-related potential applications, including nonstationary paradigms such as changing exogeneous stimulus characteristics or endogenous states during the experiment. As presented, the proposed approach is for the a posteriori denoising of single-trial sequences.
机译:事件相关电位(ERP)代表了一种无创且广泛可用的手段,用于分析感觉和认知过程的神经相关性。神经和认知工程的最新发展为使用先进的单次试验处理技术的这种成熟的测量技术提出了全新的应用领域。我们最近显示,来自图像处理的二维扩散过滤方法可用于矩阵表示形式的ERP单项试验的降噪,也称为ERP图像。与传统的一维瞬态ERP去噪技术相比,ERP图像的二维恢复可将多个刺激的规律性整合到去噪过程中。先进的各向异性图像恢复方法可能需要ERP降噪过程的方向信息。如果缺少对ERP映像中可能的痕迹的先验知识,则尤其如此。但是,由于使用了事件相关的实验范式,ERP图像的特征是各个试验具有高度的自相似性。在本文中,我们提出一种简单易用的非局部均值方法对ERP图像进行去噪,以利用这种自相似性,而不是着眼于基于边缘的方向信息提取。使用测量和模拟的ERP数据,我们将我们的方法与ERP去噪中的常规方法进行了比较。结论是,所提出的方法可以将ERP图像中的自相似性用于单次尝试的ERP去噪。这种方法对于各种诱发的和事件相关的潜在应用可能很有希望,包括非平稳的范例,例如在实验过程中改变外源刺激特性或内源状态。如所介绍的,所提出的方法是用于单试验序列的后验去噪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号