首页> 外文期刊>Network and Service Management, IEEE Transactions on >A Hybrid Deep Learning-Based Model for Anomaly Detection in Cloud Datacenter Networks
【24h】

A Hybrid Deep Learning-Based Model for Anomaly Detection in Cloud Datacenter Networks

机译:云数据中心网络中的异常检测混合深层学习模型

获取原文
获取原文并翻译 | 示例

摘要

With the emergence of the Internet-of-Things (IoT) and seamless Internet connectivity, the need to process streaming data on real-time basis has become essential. However, the existing data stream management systems are not efficient in analyzing the network log big data for real-time anomaly detection. Further, the existing anomaly detection approaches are not proficient because they cannot be applied to networks, are computationally complex, and suffer from high false positives. Thus, in this paper a hybrid data processing model for network anomaly detection is proposed that leverages grey wolf optimization (GWO) and convolutional neural network (CNN). To enhance the capabilities of the proposed model, GWO and CNN learning approaches were enhanced with: 1) improved exploration, exploitation, and initial population generation abilities and 2) revamped dropout functionality, respectively. These extended variants are referred to as Improved-GWO (ImGWO) and Improved-CNN (ImCNN). The proposed model works in two phases for efficient network anomaly detection. In the first phase, ImGWO is used for feature selection in order to obtain an optimal trade-off between two objectives, i.e., reduced error rate and feature-set minimization. In the second phase, ImCNN is used for network anomaly classification. The efficacy of the proposed model is validated on benchmark (DARPA'98 and KDD'99) and synthetic datasets. The results obtained demonstrate that the proposed cloud-based anomaly detection model is superior in comparison to the other state-of-the-art models (used for network anomaly detection), in terms of accuracy, detection rate, false positive rate, and F-score. In average, the proposed model exhibits an overall improvement of 8.25%, 4.08%, and 3.62% in terms of detection rate, false positives, and accuracy, respectively; relative to standard GWO with CNN.
机译:随着物联网(物联网)和无缝互联网连接的出现,需要在实时处理流数据的需要变得必不可少。但是,现有数据流管理系统在分析用于实时异常检测的网络日志大数据时不有效。此外,现有的异常检测方法不熟练,因为它们不能应用于网络,是计算复杂的,并且遭受高误报。因此,在本文中,提出了一种用于网络异常检测的混合数据处理模型,从而利用灰狼优化(GWO)和卷积神经网络(CNN)。为提高所提出的模型的能力,增强了GWO和CNN学习方法:1)分别改善了勘探,开发和初始人口生成能力和2)改进的辍学功能。这些延长的变体被称为改进的-GWO(IMGWO)和改进的-CNN(IMCNN)。所提出的模型在两个阶段工作,以实现有效的网络异常检测。在第一阶段,IMGWO用于特征选择,以便在两个目标之间获得最佳折衷,即减少错误率和特征集最小化。在第二阶段,IMCNN用于网络异常分类。所提出的模型的功效在基准(DARPA'98和KDD'99)和合成数据集上验证。获得的结果表明,与准确性,检测率,假阳性率和F的其他最新的模型(用于网络异常检测)相比,所提出的基于云的异常检测模型优越-分数。平均而言,在检测率,假阳性和准确性方面,拟议模型的总体上升8.25%,4.08%和3.62%;与CNN的标准GWO相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号