...
首页> 外文期刊>IEEE Transactions on Microwave Theory and Techniques >Theoretical and Experimental Studies of Flip-Chip Assembled High- $Q$ Suspended MEMS Inductors
【24h】

Theoretical and Experimental Studies of Flip-Chip Assembled High- $Q$ Suspended MEMS Inductors

机译:倒装芯片高Q $悬挂MEMS电感器的理论和实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

This paper reports the theoretical and experimental studies of high- $Q$ suspended microinductors produced by flip-chip assembly for multigigahertz RF integrated-circuit applications. The effects of device and substrate parameters on the $Q$ factor of the inductor devices are studied by numerical simulation using Ansoft''s High Frequency Structure Simulator electromagnetic field simulation package. Suspended inductor devices are realized using a flip-chip assembly method in which the inductor structures with the supporting pillars are fabricated on a low-cost polyimide thin-film carrier and then assembled onto a low resistivity (3–4 $ Omega,cdot,$cm) silicon substrate by flip-chip bonding. Individual and 2 $,times,$2 arrays of meander and spiral inductor designs have been successfully fabricated with air gap heights ranging from 15 to 31 $mu$m. Maximum $Q$ factors of ${sim}$ 15 and ${sim}$13 at ${sim}$1 GHz have been achieved for meander and spiral suspended inductor devices before pad deembedding. It is shown that the optimal air gap between the inductor and substrate surface is ${sim}{hbox{15}} mu$m beyond which no further enhancement in the $Q$ factor can be obtained for devices on low-resistivity substrates. The experimental results are in excellent agreement with that of theoretical simulation. The inductor assembly method requires minimal chip/wafer processing for integration of high-$Q$ i-nductors.
机译:本文报道了通过倒装芯片组装生产的用于高千兆赫兹RF集成电路的高$ Q $悬浮微电感器的理论和实验研究。使用Ansoft的“高频结构仿真器”电磁场仿真软件包,通过数值模拟研究了器件和衬底参数对电感器器件$ Q $因子的影响。悬浮电感器设备通过倒装芯片组装方法实现,其中带有支撑柱的电感器结构在低成本的聚酰亚胺薄膜载体上制造,然后组装成低电阻率(3-4美元,Omega,cdot,$厘米)通过倒装芯片键合的硅衬底。已经成功地制造出分别为2乘2的曲折和螺旋电感器阵列,气隙高度范围为15至31μm。在焊盘去嵌入之前,对于曲折和螺旋悬浮电感器器件,已达到$ {sim} $ 15和$ {sim} $ 13 GHz时的最大$ Q $因数。结果表明,电感器和基板表面之间的最佳气隙为$ {sim} {hbox {15}}μm,对于低电阻率基板上的器件,无法获得$ Q $系数的进一步提高。实验结果与理论模拟结果吻合良好。电感器组装方法只需要最少的芯片/晶片处理,即可集成高价Q $ i电感器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号