首页> 外文期刊>IEEE Transactions on Medical Imaging >Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging Based on a Riemannian Manifold Approach
【24h】

Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging Based on a Riemannian Manifold Approach

机译:基于黎曼流形方法的张量拟合和电视正则化相结合的扩散张量成像

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider combined TV denoising and diffusion tensor fitting in DTI using the affine-invariant Riemannian metric on the space of diffusion tensors. Instead of first fitting the diffusion tensors, and then denoising them, we define a suitable TV type energy functional which incorporates the measured DWIs (using an inverse problem setup) and which measures the nearness of neighboring tensors in the manifold. To approach this functional, we propose generalized forward- backward splitting algorithms which combine an explicit and several implicit steps performed on a decomposition of the functional. We validate the performance of the derived algorithms on synthetic and real DTI data. In particular, we work on real 3D data. To our knowledge, the present paper describes the first approach to TV regularization in a combined manifold and inverse problem setup.
机译:在本文中,我们考虑在扩散张量的空间上使用仿射不变黎曼度量的DTI组合电视降噪和扩散张量拟合。代替先拟合扩散张量,然后对其进行去噪,我们定义了一个合适的TV型能量函数,该函数合并了测得的DWI(使用反问题设置)并测量了歧管中相邻张量的接近度。为了实现该功能,我们提出了广义的前向后拆分算法,该算法结合了对功能分解执行的显式步骤和隐式步骤。我们验证合成和真实DTI数据上导出算法的性能。特别是,我们处理真实的3D数据。据我们所知,本文描述了在流形和逆问题组合的组合中进行电视正则化的第一种方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号