首页> 外文期刊>IEEE Transactions on Magnetics >Synthesis, Characterization and Hard Ferromagnetism in FePt/ZnO Nanocomposites with Ultra-Small Size
【24h】

Synthesis, Characterization and Hard Ferromagnetism in FePt/ZnO Nanocomposites with Ultra-Small Size

机译:超小尺寸FePt / ZnO纳米复合材料的合成,表征和硬铁磁性

获取原文
获取原文并翻译 | 示例

摘要

Multi-component hybrid nanostructures containing two nanoscaled components of FePt and ZnO were successfully fabricated through seed mediated growth. The preformed FePt nanoparticles, which were fabricated either by the reduction of ${hbox{Pt}}{({{rm acac}})_{2}}$ and the decomposition of ${rm Fe(CO)}_{5}$ or by simultaneous chemical reduction of ${hbox{Pt}}{({{rm acac}})_{2}}$ and ${hbox{Fe}}{({{rm acac}})_3}$ by 1,2-hexadecanediol at high temperature, work as the hetero-nucleation seeds for the preparation of hybrid nanostructures. The end products can be either FePt@ZnO core/shell nanoparticle assembly or FePt/ZnO nanocomposites, depending on the seeding particle size. If the seeding particle size is larger than 3.5 nm, core/shell nanoparticle assembly was formed, while if the seeding particle is smaller than 2 nm, FePt/ZnO nanocomposites were formed. For the FePt@ZnO core/shell, HRTEM showed a quasi-epitaxial growth between the FePt core and the ZnO shell. The ZnO shell was highly deformed. The core/shell nanoparticle assembly exhibits both semiconducting and magnetic properties which is superparamagnetic at room temperature. For the nanocomposites, the as-synthesized ultra-small 1.9 nm ${{hbox{FePt}}_3}$ nanoparticles are superparamagnetic. After embedding into the ZnO matrix, those superparamagnetic nanoparticles become magnetically hard with coercivity field of 650 Oe at room temperature. First-principles calculations indicate a giant interfacial anisotropic energy, induced by the strong spin-orbit interaction between Pt and O at interface, leading to room-temperature permanent ferromagnetism- The findings shed light on research for new material designs with giant interfacial anisotropy for various applications.
机译:通过种子介导的生长成功地制造了包含FePt和ZnO两种纳米级成分的多成分杂化纳米结构。预制的FePt纳米粒子,可以通过还原$ {hbox {Pt}} {({{rm acac}})_ {2}} $以及分解$ {rm Fe(CO)} _ {5来制造} $或同时化学还原$ {hbox {Pt}} {({{rm acac}})_ {2}} $和$ {hbox {Fe}} {{{{rm acac}})_ 3} $ 1,2-十六烷二醇在高温下作为杂化核种子用于制备杂化纳米结构。最终产品可以是FePt @ ZnO核/壳纳米颗粒组件,也可以是FePt / ZnO纳米复合材料,具体取决于种子的粒径。如果播种粒径大于3.5nm,则形成核/壳纳米颗粒组装体,而如果播种颗粒小于2nm,则形成FePt / ZnO纳米复合物。对于FePt @ ZnO核/壳,HRTEM显示出FePt核与ZnO壳之间的准外延生长。 ZnO外壳高度变形。核/壳纳米粒子组件同时具有半导体和磁性,这在室温下是超顺磁性的。对于纳米复合材料,合成后的超小1.9 nm $ {{hbox {FePt}} _ 3} $纳米粒子具有超顺磁性。嵌入到ZnO基质中后,这些超顺磁性纳米颗粒在室温下具有650 Oe的矫顽力场,具有磁性。第一性原理计算表明,由于界面处Pt和O之间强烈的自旋轨道相互作用而诱发了巨大的界面各向异性能,从而导致了室温永久铁磁性。这一发现为各种材料具有巨大界面各向异性的新材料设计的研究提供了启示应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号