首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Deep Variational Matrix Factorization with Knowledge Embedding for Recommendation System
【24h】

Deep Variational Matrix Factorization with Knowledge Embedding for Recommendation System

机译:深度变分矩阵因素,具有推荐系统的知识嵌入

获取原文
获取原文并翻译 | 示例

摘要

Automatic recommendation has become an increasingly relevant problem to industries, which allows users to discover new items that match their tastes and enables the system to target items to the right users. In this article, we have proposed a deep learning based fully Bayesian treatment recommendation framework, DVMF, which has high-quality performance and ability to integrate any kinds of side information handily and efficiently. In DVMF, the variational inference technique and the reparameterization tricks are introduced to make DVMF possible to be optimized by the stochastic gradient-based methods, in addition, two novel deep neural networks have been constructed to infer the hyper-parameters of the distributions of latent factors from the knowledge of user and item, which are represented as low-dimensional real-valued vectors retaining primary features. Experimental results on five public databases indicate that the proposed method performs better than the state-of-the-art recommendation algorithms on prediction accuracy in terms of quantitative assessments.
机译:自动推荐已成为行业越来越相关的问题,允许用户发现符合其品味的新项目,并使系统将项目定位到合适的用户。在本文中,我们提出了一个完全贝叶斯治疗推荐框架,DVMF的深度学习,具有高质量的性能和能力,可以清洁和有效地整合任何类型的信息。在DVMF中,引入了变分推理技术和重新支柱化技巧以使DVMF通过随机梯度的方法进行优化,此外,已经构建了两种新的深度神经网络以推断潜伏分布的超参数来自用户和项目知识的因素,它表示为保持主要特征的低维实值向量。在五个公共数据库上的实验结果表明,在定量评估方面,该方法比最先进的推荐算法表现优于预测准确性的最先进的推荐算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号