首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >The Power of Bounds: Answering Approximate Earth Mover's Distance with Parametric Bounds
【24h】

The Power of Bounds: Answering Approximate Earth Mover's Distance with Parametric Bounds

机译:界限的力量:用参数界回答近似地球移动器的距离

获取原文
获取原文并翻译 | 示例

摘要

The Earth Mover's Distance (EMD) is a robust similarity measure between two histograms (e.g., probability distributions). It has been extensively used in a wide range of applications, e.g., multimedia, data mining, computer vision, etc. As EMD is a computationally intensive operation, many efficient lower and upper bound functions of EMD have been developed. However, they provide no guarantee on the error. In this work, we study how to compute approximate EMD value with bounded error. First, we develop a parametric dual bound function for EMD, in order to offer sufficient trade-off points for optimization. After that, we propose an approximation framework that leverages on lower and upper bound functions to compute approximate EMD with error guarantee. Then, we present three solutions to solve our problem. Experimental results on real data demonstrate the efficiency and the effectiveness of our proposed solutions.
机译:地球移动器的距离(EMD)是两个直方图(例如,概率分布)之间的鲁棒相似度测量。它已广泛用于广泛的应用中,例如,多媒体,数据挖掘,计算机视觉等。作为EMD是一种计算密集型操作,已经开发了MEMD的许多有效的下限和上限功能。但是,它们无法对错误保证。在这项工作中,我们研究如何使用界限错误计算近似EMD值。首先,我们开发了EMD的参数双界功能,以便为优化提供足够的权衡点。之后,我们提出了一种近似框架,其利用较低和上限函数来计算具有误差保证的近似EMD。然后,我们提出了三个解决我们问题的解决方案。实验结果实验数据证明了我们提出的解决方案的效率和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号